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Public health screening programs are widely used, but their effectiveness is questioned due

to low participation among high-risk individuals who would benefit most from early diag-

nosis. I study selection into health screenings and their causal effects using quasi-random

variation from South Korea’s National Health Screening Program, which subsidizes 90–

100% of screening costs every other year at even-numbered ages. Using survey data, I

find that subsidy eligibility increases screening completion by 16–19 percentage points

(183–295%). Compliers with the subsidies are predominantly from lower socioeconomic

backgrounds and are in poorer health than those who always participate regardless of

subsidies. Using national health insurance claims data, I find that subsidy eligibility

increases both early- and late-stage cancer diagnoses by 17–19%, as well as treatment

for conditions including cancer precursors, hypertension, diabetes, high cholesterol, and

osteoporosis. These results suggest that public health screenings with subsidies can ef-

fectively target high-risk individuals and promote preventive care use.
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1 Introduction

Health screenings are widely considered an essential form of preventive care that re-

duces premature deaths from heart disease and cancer, the two leading causes of death

in developed countries (Cutler, 2008). Based on clinical trials demonstrating their ef-

fectiveness, many governments have introduced public screening programs (CanScreen5,

2022). Yet the population-level impact of these programs is often limited by poor tar-

geting (Woolhandler and Himmelstein, 1988; Zonderman et al., 2014). Screening par-

ticipation is typically lower among individuals with lower socioeconomic status (SES),

who face higher cancer and all-cause mortality, raising concerns about programs’ effec-

tiveness (Pill et al., 1988; Waller et al., 1990; Khang et al., 2004; Jung-Choi et al., 2011;

Bender et al., 2015; Jones et al., 2019; Carethers and Doubeni, 2020). Underuse among

high-risk individuals reduces opportunities for early detection, while overuse among low-

risk individuals raises risks of false positives, overdiagnosis, and overtreatment (Welch

et al., 2016; Autier et al., 2017; Kowalski, 2023). Therefore, improved targeting could

enhance early diagnosis, reduce unintended harms, and help narrow health disparities

across socioeconomic groups.

Prior studies on selection into screenings and their causal effects often rely on local

variation (Kadiyala and Strumpf, 2016; Kim and Lee, 2017; Einav et al., 2020; Kowalski,

2023). Most exploit either age cutoff at the recommended starting age or income cutoff

for income-based subsidies. While such designs credibly identify selection patterns and

causal effects around the cutoff, their findings may not generalize to older populations or

to individuals with lower SES, groups in which cancer incidence is higher. Yet most of the

world’s largest screening programs, including the Affordable Care Act’s preventive care

mandate in the United States and Europe’s organized screening programs, offer universal

and unconditional access. Without variation generating population-level compliers, we

still know little about whether these large-scale screening efforts succeed in reaching

high-risk individuals.1

1When large-scale programs have been studied, researchers often rely on difference-in-differences
designs exploiting staggered rollouts (Bitler and Carpenter, 2016; Van Ourti et al., 2020; Guthmuller
et al., 2023). However, these approaches typically do not identify the characteristics of compliers relative
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This study analyzes South Korea’s National Health Screening Program (NHSP), a

nationwide policy that provides blanket subsidies for all the citizens repeatedly through-

out their lifetime. I investigate two research questions: First, who is most responsive to

the subsidies? Are they high-risk or low-risk individuals? Second, what are the causal

effects of screening for these compliers on disease diagnosis and preventive care use?

South Korea’s NHSP subsidizes 90–100% of the costs for stomach, breast, and cervi-

cal cancer screenings. It also covers a comprehensive cardiovascular and general health

examination, commonly referred to as a “general screening”. Subsidies begin at age 30

for cervical screening and at age 40 for other screenings, and are provided during the

calendar year when an individual reaches an even-numbered age.2 I show that this rule

generates quasi-random variation in subsidy eligibility, conditional on a flexible function

of age,3 and creates large variation in screening take-up between treatment (even-aged

individuals eligible for subsidies) and control (odd-aged individuals ineligible for subsi-

dies) groups. The identifying assumption is that, conditional on age controls, there are no

systematic differences between treatment and control groups other than subsidy eligibil-

ity. As I show later, this variation captures both net increases in screening participation

and intertemporal substitution, as individuals may shift screenings from unsubsidized to

subsidized ages.

This study uses two complementary datasets: (i) the Korean Health Panel Survey

and (ii) National Health Insurance Service (NHIS) claims data. The survey provides

nationally representative information on 107,200 individual-year pairs from 2008 to 2018,

including detailed measures of socioeconomic status, health care use, and health behav-

iors. It also records the exact date, type, and result of each screening, which I use to

analyze the impact of subsidies on take-up and selection. The administrative NHIS claims

data cover more than 7,450,000 individual-year observations from 2002 to 2021 and in-

to always- or never-takers.
2The policy rule verbatim states that individuals born in an even (odd) year are eligible for subsidies

in even (odd) calendar years. This is equivalent to eligibility in the calendar year when one turns an
even-numbered age.

3Age controls adjust for mechanical imbalance in an analytical sample starting at age 40 (an even
number), which makes even-aged individuals younger on average than odd-aged individuals.
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clude comprehensive information on health care utilization. Importantly, they record all

cancer diagnoses, regardless of whether detected through screening or not, which I use

to analyze the impact of screenings. However, they have incomplete records of screening

participation and are therefore not used to measure take-up.

I find that subsidy eligibility increases screening take-up by 16-19 percentage points

(183–295%) for general, stomach, breast, and cervical screenings, corresponding to arc

elasticities of –0.48 to –0.72.4 In addition, I document sizable spillovers across screening

types. Subsidy eligibility increases take-up of annually subsidized liver and colorectal

screenings by 2.7–3.3 percentage points (94-124%) and unsubsidized lung and prostate

screenings by 0.6-0.7 percentage points (67-81%). These cross-screening spillovers are

much larger in magnitude than the cross-vaccine spillovers documented by Carpenter

and Lawler (2019) and Humlum et al. (2024).

To examine who responds to subsidies, I compare compliers, who screen if and only

if subsidized, with always-takers, who always screen regardless of subsidies, and never-

takers, who never screen. Compliers fall between always- and never-takers: they have

lower socioeconomic status and worse health than always-takers, but show healthier be-

haviors than never-takers. Compared to always-takers, compliers have 12% lower house-

hold income, are 40% less likely to be college-educated, and are 13% less likely to be

employed. Consistent with negative selection on SES, they are also 68% more likely to

be diagnosed with a stomach disease. Compared to never-takers, compliers engage in

healthier behaviors: they are 30% less likely to smoke and 18% more likely to engage in

vigorous exercise. These findings suggest that subsidizing screening disproportionately

attracts higher-risk individuals who stand to benefit more from earlier diagnosis.

Next, using National Health Insurance Service claims data, I estimate the intent-to-

treat (ITT) effects of subsidy eligibility on cancer diagnoses. Subsidy eligibility increases

the one-year overall cancer detection rate by 0.16 percentage points (18%), with signifi-

cant gains in six of the seven cancer types examined. Notably, stomach cancer diagnoses

4These effects are substantially larger than those found in prior studies on preventive care, including
the RAND Health Insurance Experiment, the Oregon Medicaid Experiment, and a related study on
screening subsidies (Newhouse, 1993; Finkelstein et al., 2012; Kim and Lee, 2017). I later show that
intertemporal substitution partly explains this difference.
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rise by 0.08 percentage points (41%), and breast cancer diagnoses by 0.05 percentage

points (11%). The effects extend beyond cancers directly targeted by biennial subsidies.

For example, colorectal cancer diagnoses increase by 0.02 percentage points (10%). While

the main analysis focuses on ITT effects, local average treatment effects (LATE) of one

screening can be calculated by dividing ITT estimates by increases in take-up rates esti-

mated from survey data. The resulting LATEs are 0.0041 percentage points (213%) for

stomach cancer, 0.0026 percentage points (56%) for breast cancer, and 0.0055 percentage

points (287%) for colorectal cancer. These LATE estimates represent the cancer detection

rates among compliers and are substantially large, consistent with the finding that com-

pliers are disproportionately high-risk individuals. For context, Guthmuller et al. (2023)

estimate a LATE of 0.0010 for breast cancer in Europe’s organized screening programs,

less than half of my estimate, 0.0026.

Medical studies emphasize the role of early detection of cancers in decreasing mor-

bidity and mortality (Nicholson et al., 2024; Davidson et al., 2021; Krist et al., 2021;

Grossman et al., 2018; Curry et al., 2018a; Park et al., 2015; Etzioni et al., 2003). I break

down aggregate diagnoses by cancer stage and show that screening increases detection of

both early stage in-situ (stage 0) and invasive (stage 1-3) cancers. For instance, subsidy

eligibility increases invasive breast cancer diagnoses by 0.03 percentage points (8%) and

in-situ diagnoses by 0.016 percentage points (24%). Consistent with earlier detection,

breast cancer patients diagnosed in the treatment group exhibit 1.7 percentage points

(1.8%) higher five-year survival rate than those diagnosed in the control group.

Finally, screenings increase the use of preventive care for precancerous conditions and

cardiovascular risk factors. Beyond the detection of cancers, screenings help prevent

cancer development by identifying precursors such as Helicobacter pylori infection and

colon polyps, which are strongly linked to stomach and colorectal cancers. Treatments

for these conditions increase by 0.003–0.720 percentage points (15–62%). Screenings

also detect cardiovascular risk factors, leading to higher medication use for high blood

pressure, diabetes, and high cholesterol by 0.02–0.42 percentage points (0.17–3.01%).

Among other conditions covered by screenings, prescriptions increase for osteoporosis by
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0.11 percentage points (4%) but show no significant change for tuberculosis.

A unique feature of the research design is alternating treatment. Individuals switch

between treatment and control groups each year, creating incentives to shift screening

from control to treatment ages to receive subsidized screenings. This intertemporal sub-

stitution widens the take-up gap between treatment and control groups without net in-

crease in overall participation. I find that biennial subsidies generate both net increase in

take-up and substitution, by analyzing two sharp changes in subsidy eligibility: the age

40 eligibility cutoff and January/December of subsidized years. Moreover, comparing the

magnitude of bunching in January versus December reveals that advancing screenings is

more common than delaying them.

Intertemporal substitution presents limitations on analysis, but also analytical lever-

age. On the one hand, the two-year eligibility cycle complicates the assessment of long-

term impacts. On the other hand, it amplifies the effect of subsidies on take-up, providing

larger variation to identify selection patterns and causal effects. Furthermore, it allows

treatment and control years within the same individuals to serve as empirical counter-

factuals, enabling classification of compliance groups at the individual level. Using this

approach, I show that individuals who respond to subsidies by increasing participation

share similar characteristics with those who respond by shifting screening timing.

This study contributes to two strands of literature. First, it adds to the literature on

selection into treatment in the context of health screenings. Prior studies mostly rely on

local variation, such as income thresholds or age-based eligibility cutoffs, to characterize

compliers (Kim and Lee, 2017; Einav et al., 2020; Kowalski, 2023). These regression

discontinuity designs restrict compliers to individuals near the cutoff, limiting analysis

of how selection varies across broader demographic and socioeconomic dimensions.5 In

contrast, I exploit even- and odd-age eligibility rules, which generate broad, population-

wide variation. This design enables the study of selection across age, income, education,

and other dimensions closely related to cancer incidence, and better reflects the structure

of large-scale screening programs worldwide that provide universal access.

5While Kowalski (2023) examine an influential clinical trial on mammography in Canada, the sample
is restricted to women aged 40-49.
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This advantage naturally extends to the estimation of causal effects. Compared to

prior studies focusing on impacts around specific age or income cutoffs (Decker, 2005;

Kadiyala and Strumpf, 2012, 2016; Kim and Lee, 2017; Myerson et al., 2020; Sun et al.,

2022), the population-wide variation in this study allows for the estimation of both lo-

cal and population-level effects. I document substantial heterogeneity in the impact of

screening on cancer detection, with much larger effects among older and lower-income

individuals. Accounting for this heterogeneity provides a more complete picture of the

benefits of screenings and offers new evidence on the population-wide consequences of

introducing universal screening programs.

Finally, this study expands the scope of outcomes examined in the literature on causal

effects of screening. While prior research largely evaluates single screening, most of-

ten mammography, in isolation, I jointly examine eight screening types (Decker, 2005;

Kadiyala and Strumpf, 2012, 2016; Bitler and Carpenter, 2016, 2017; Kim and Lee, 2017;

Kim et al., 2019; Myerson et al., 2020; Van Ourti et al., 2020; Iizuka et al., 2021; Sun

et al., 2022; Guthmuller et al., 2023). This allows for comparisons of heterogeneous ef-

fects across screenings within the same setting and reveals spillovers in participation and

diagnosis. I further extend outcomes beyond aggregate cancer detection by distinguishing

in-situ from invasive cancers, showing that screenings increase both early- and late-stage

diagnoses. In addition, I document effects on precancerous conditions and chronic risk

factors, highlighting the role of public screening programs as an entry point into broader

preventive care.

The rest of the paper is organized as follows. Section 2 describes the disease burden

in South Korea and provides an overview of the National Health Screening Program.

Section 3 outlines the identification strategy using even/odd age-based subsidies. Sec-

tion 4 discusses the survey and administrative datasets used for this study. Section 5

presents the results on take-up, selection into screenings, and their causal effects. Section

6 concludes.
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2 Institutional background

2.1 Disease burden and screenings in South Korea

Cancer and cardiovascular diseases are leading public health challenges in South Korea

due to their high prevalence and contribution to mortality. In 2023, cancer accounted for

approximately 24% of all deaths. Cardiovascular diseases, including heart disease, stroke,

and hypertension, together with related risk factors like diabetes, were responsible for an

additional 22%. Many of these conditions are preventable or manageable if identified

early, making regular screening a critical component of population health policy.

To address this burden, the National Health Screening Program (NHSP) offers two

types of publicly financed screenings. The first is a comprehensive set of tests commonly

referred to as a “general health screening” that targets cardiovascular and metabolic risk

factors, including high blood pressure, blood glucose, and cholesterol. It also includes

urine tests to assess kidney and liver function, and chest X-rays to screen for tuberculosis.6

Additional age-specific tests include osteoporosis screening, mental health assessments,

and evaluations of functional capacity in older adults. Individuals identified as high-

risk for hypertension, diabetes, or tuberculosis are referred for follow-up testing and

consultation.

Second, five types of cancer screenings are subsidized under the NHSP: stomach,

breast, cervical, liver, and colorectal. These screenings target cancers that are relatively

common in South Korea and for which early detection is known to improve health out-

comes. Stomach cancer is particularly prevalent in Korea and East Asia more broadly,

and it has consistently ranked among the top five cancers in both incidence and mortality

for men and women.7 It is screened using upper endoscopy (gastroscopy). Breast can-

cer is the most frequently diagnosed cancer among Korean women and is screened using

bilateral mammography. Cervical cancer incidence has declined steadily over the past

6South Korea has the highest incidence and mortality rates of tuberculosis (TB) among OECD
countries (Cho, 2018). TB screening is mandatory for students entering middle and high school, and
adults receive biennial TB screening as part of the general health screening.

7The age-standardized incidence rates per 100,000 were 27 for South Korea and 27.6 for Japan in
2022, compared to 4.1 in the United States and 6.4 in Germany (World Cancer Research Fund, 2024).
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two decades, and is screened with Pap smears. Liver cancer, while a major contributor

to cancer mortality, is screened only for high-risk individuals, such as those with chronic

liver disease or hepatitis, and is not universally subsidized. Screening is performed using

liver ultrasound. Colorectal cancer, the second most common cancer in 2022, is initially

screened using a fecal occult blood test (FOBT), with colonoscopy subsidized only for

individuals who test positive. However, due to relatively low costs and low perceived

risk, many individuals opt to undergo colonoscopy directly without prior FOBT (Baik

and Lee, 2023).

Not all high-burden cancers are covered by the NHSP. This study additionally con-

siders two unsubsidized screenings: lung and prostate cancer. Lung cancer is the leading

cause of cancer-related death in South Korea, but past screening technologies, chest ra-

diography, have limited effectiveness in detecting early-stage disease in the general pop-

ulation (American Lung Association, 2023). As a result, lung cancer screening was not

subsidized during the study period and was only added to the public program in 2019,

right after our study period, for high-risk individuals with the new technology: low-

dose computed tomography (Aberle et al., 2013). Prostate cancer, while highly common

among older men, is also excluded from the subsidized program due to its slow progres-

sion. Even without screening, it is likely to remain asymptomatic throughout life, and

routine screening could lead to overdiagnosis and overtreatment, raising concerns about

potential harms outweighing benefits (Neal and Donovan, 2000). Both lung and prostate

screenings are therefore typically paid for entirely out-of-pocket.

2.2 Subsidy schedule and program design

The National Health Screening Program (NHSP) provides subsidies to encourage

participation in preventive screenings. The subsidy schedule follows clinical guidelines on

starting age and screening frequency. For instance, screenings recommended biennially

from age 40 are subsidized every two years beginning at that age. This section outlines

the NHSP subsidy policy by screening type and highlights the quasi-random variation in

subsidy timing that informs our identification strategy.
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Screenings can be grouped into three categories based on their subsidy frequency:

biennial, annual, and unsubsidized. Table 1 summarizes the rules. Biennial screenings,

including general, stomach, breast, and cervical, are subsidized every other year. A

key feature of the program is that subsidies are provided throughout the calendar years

when one’s age is even-numbered. Here, “age” refers to calendar age, calculated as the

difference between the current year and birth year.

For example, someone born in 1970 would be eligible for subsidized screenings through-

out 2020, since her age is 50 (= 2020 - 1970), an even number. Next year in 2021, however,

her age would turn 51, an odd number, so she would need to pay the full costs for the

same screenings if she wants to receive them.8 Annual screenings include liver and col-

orectal cancer screenings, which are subsidized every year.9 Lung and prostate cancer

screenings are not subsidized under the NHSP during the study period.

For each subsidized screening, whether biennial or annual, there is a cutoff age where

subsidies begin. For general, stomach, breast and liver screenings, subsidies start at

age 40. There are no subsidies before age 40, even if one’s age is even. Hence, general,

stomach, and breast screenings that follow the biennial schedule are subsidized at ages 40,

42, 44 and so on.10 Liver screening that follows the annual schedule is subsidized at ages

40, 41, 42, and onward. The age cutoff for cervical screening is 30, while for colorectal

screening, it is 50.11 Since cervical screening follows a biennial schedule, subsidies are

available at ages 30, 32, 34 and onward. Colorectal screening following annual schedule is

subsidized at ages 50, 51, 52 and onward. No age thresholds apply to lung and prostate

8The policy rule verbatim states that those born in even (odd) years are eligible for subsidies at even
(odd) years. This is mathematically equivalent to the rule where one is eligible for subsidies at even
ages, defined as the difference between the current year and birth year. This is because the difference
between two even numbers or two odd numbers is always even.

9Colorectal screening was biennially subsidized until 2011 and annually thereafter. Because it was
annual for the majority of the study period, it is treated as such in the main analysis. I explicitly examine
this policy change in Appendix Section E.

10Two minor exceptions exist in the general health screening program: (i) some employee- and self-
employed–insured individuals may receive biennial subsidies before age 40, and (ii) non-office workers
are eligible for annual rather than biennial screenings. These exceptions apply only to general screening,
and survey evidence suggests limited adherence to the annual schedule. Since our analysis begins at age
40, they do not affect identification, and we abstract from them.

11In 2016, the age cutoff for cervical screening was lowered to 20. Since age 30 was the cutoff for most
of the study period, this analysis adopts age 30 threshold.
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cancer screenings, as they were not subsidized.

The amount of subsidies is full coverage for the general health screening and 90%

subsidy for 5 types of cancer screenings.12 As a result, individuals pay nothing for general

screening and only 10% of the cost for cancer screenings.13 For lower-income individuals,

even the 10% copay is waived, effectively making all screenings free.14 Excluding liver

screening, which is subsidized only for high-risk individuals, the total amount of available

screening subsidies one can receive at even ages is approximately $117.5 for men and

$168.5 for women.

The program was designed to maximize participation by ensuring easy access to subsi-

dized screenings. Screenings can be obtained at public health clinics or designated private

hospitals and clinics approved by the NHSP.15 While appointments are generally not re-

quired for general screening, they are typically necessary for more specialized procedures

such as gastroscopy or colonoscopy. Eligible individuals receive paper mail or mobile

reminders, which specify the available subsidized screenings and list nearby participating

providers.

3 Identification

Figure 1a provides intuition for the subsidy-induced variation in screening take-up.

The figure plots the take-up of general screening, which is subsidized biennially from age

40. Before age 40, take-up rates are similar for even and odd ages. However, after age

40, take-up at even ages jumps to around 27 percent, while take-up at odd ages remains

steady around 10 percent. The take-up gap between the even and odd ages after 40

captures the effect of biennial subsidies on screening take-up.

12Under the Occupational Safety and Health Act, employers are required to ensure their employees
undergo general health screening. When employees do not participate, employers face financial penalty
of approximately $40. This mandate applies only to general screening, not to cancer screenings.

13Subsidy generosity increased over time. For example, cervical screening was fully subsidized during
the study period, and colorectal screening became fully subsidized shortly afterward.

14The copay waiver applies to individuals whose health insurance premium falls below the median.
Because the premium is income- and asset-based, the waiver primarily benefits lower-income individuals.
See Kim and Lee (2017) for an analysis of take-up and detection effects at the premium threshold.

15As of December 2023, approximately 5,800 private facilities were designated for NHSP screening,
equivalent to one center for every 900 adults aged 40 and older (National Health Insurance Service, 2023).
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While the distinction between even and odd ages seems plausibly exogenous, the

even-age group (treatment) is mechanically younger than the odd-age group (control),

because subsidies begin at age 40, an even number.16 I argue that age is the only difference

between the treatment and control groups, so they should be balanced after controlling

for age. Hence, I estimate the following econometric specification.

yit “ β0 ` β1 ¨ treatit ` fpageitq ` ϵit (1)

The treatment group indicator, treatit, equals 1 if individual i has even age in year t.

Note that the treatment group is not individual-specific, but varies with years. Age

control variable, fpageitq, is a function of age flexible enough to remove the age effect

between the treatment and the control group. The main specification uses linear splines

with 5-years intervals, and robustness checks with alternative age controls are reported

in the Appendix Section ??. Standard errors are clustered at the individual level.17

Table 2 presents conditional balance between treatment and control groups using sur-

vey data for individuals aged 40 to 89. First, note that the two groups are almost equally

sized, suggesting that the even/odd age rule evenly divides the sample into treatment and

control groups. Column 3 shows that, after controlling for age, differences in covariates

are small and statistically insignificant. Hence, we can attribute the difference in take-up

between the treatment and the control group as the causal effect of screening subsidies.

Similar balance checks using two administrative health insurance datasets are presented

in Table A2 and A3, confirming that treatment and control groups are well balanced

conditional on age.

The identification strategy in this study differs from a standard randomized controlled

trial (RCT), because individuals alternate between treatment and control intertemporally.

This creates an incentive to shift screenings from control to treatment ages to align

16Since the age distribution roughly declines with age starting from 40, the even-age group is always
younger than the odd-age group in an analytical sample starting from age 40, regardless of the ending
age. This also creates imbalances in covariates correlated with age.

17Despite using panel data, the main specification does not include any panel method to make it clear
that the identification strategy does not require panel structure. Robustness checks using individual
fixed effects are provided in Appendix Section ??.
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take-up with subsidy eligibility. This intertemporal substitution amplifies the take-up

gap between treatment and control groups, which makes it easier to detect statistically

significant effects of screenings on downstream outcomes. It also provides a chance to

test whether individuals are forward-looking and responsive to anticipated price changes

by advancing or delaying screenings. However, this feature imposes two restrictions on

our analysis. First, it precludes estimation of long-term effects, since everyone ultimately

belongs to the treatment group within a two-year window. Second, it makes it challenging

to isolate the net increase in screening take-up attributable to subsidies, since the observed

take-up gap reflects both new screenings and shifts in timing.

While this study cannot fully separate net increase from intertemporal substitution,

Section 5.1 provide suggestive evidence that both channels play a role, with advancing

screenings more common than delaying. This study embraces substitution as a mechanism

through which biennial subsidies magnify the take-up gap and focus on selection into

screening and its short-term effects.

4 Data

This study draws on two complementary data sources: nationally representative sur-

vey data on health care utilization and administrative national health insurance claims

data. The survey data provide detailed information on health screening take-up, but

are not big enough to study rare outcomes, such as cancer incidence or mortality. The

administrative claims data include a sufficient number of cancer incidences and deaths

for statistical analysis, but have incomplete records of screening participation. Although

the two datasets cannot be linked at the individual level, I use both to provide insight

on the effect of subsidies on screening and subsequent behaviors.

The survey data come from the Korean Health Panel Survey, spanning the years

2008-2018.18 It is a longitudinal household survey with around 7,000 households and

21,300 individuals. To maintain national representativeness in response to gradual attri-

18It is version 1.7.1 made jointly by Korean Institute for Health and Social Affairs and National Health
Insurance Services.
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tion, a second cohort of 1,800 households (5,000 individuals) was added to the sample

in 2014. Data were collected annually through face-to-face interviews using computer-

assisted personal interviewing (CAPI). All household members were surveyed each year,

and all variables are self-reported.

The survey datasets include annual data on demographic and socioeconomic charac-

teristics, health care utilization, and health behaviors. Socioeconomic status variables in-

clude yearly income and educational attainment. Health care utilization data are recorded

at the visit level for outpatient, inpatient, and emergency services.19 For each hospital

visit, the dataset records the date, total expenditures on hospital and drug services, and

diagnosis codes.20 Hospital visits for health screenings include additional information on

the type of screening (general or cancer-specific), tests performed, results, and any diag-

nosis made. The dataset also includes information on health behaviors such as smoking,

drinking, and physical activity. For each behavior, the dataset indicates participation

and frequency. For smoking and drinking, I consider both current use and daily use to

capture behavioral intensity.21 Physical activity is classified by intensity into vigorous

exercise, moderate exercise, and walking.22

To complement the survey data, this study utilizes national health insurance claims

data, specifically the Standard Cohort Database (2002-2019) and the Customized Cohort

Database (2002-2021). The former includes a random sample of one million individuals,

while the latter includes a separate random sample of approximately 640,000 individu-

als. Both datasets provide demographic information and health care utilization records.

Additionally, the Standard Cohort Database provides data on prescription and cause-

specific mortality, whereas the Customized Cohort Database includes cancer incidence

19Although data collection interviews were conducted annually, the unit of observations in these
datasets is at the visit level. This was possible because survey participants were asked to keep a specif-
ically designed health diary and save all receipts from medical visits and pharmacy purchases. Survey
enumerators collected these records during annual visits, and cross-checked diary entries against receipts.
Each interview began by documenting medical visits since the date of the previous interview, ensuring
no missing period.

20Diagnoses were coded using the Korean Classification of Diseases, a Korean version of ICD-10.
21Behavioral status is based on activity in the month preceding the interview.
22Specific examples for such activities were provided at the survey. They are measured based on

activity during the week prior to the interview.
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data. Given that the two samples are both random samples and exhibit similar aver-

age demographic and health insurance characteristics, they are collectively referred to as

health insurance claims data in this study.

The claims data contain cancer diagnosis records regardless of whether the diagnosis

was made through screening. Cancer diagnoses are inferred using information from the

Coinsurance Reduction Program for Rare and Severe Diseases (CRP), administered by

the National Health Insurance Service (NHIS) from year 2004. Under this program,

coinsurance rates for hospital visits, which normally range from 20-50%, are reduced to

0-10% for patients with rare and severe diseases, including cancers, stroke, tuberculosis,

and other rare or incurable conditions that incur large health care expenditures. For

newly diagnosed cancer patients, registering with the CRP is typically one of the first

steps, making it a reliable source for identifying true cancer diagnoses, not including false

positives.23 The CRP is implemented independently from the health screening programs,

so it captures cancer diagnoses regardless of how the cancer was detected, whether through

screening or not. I use this program to infer new cancer diagnoses and investigate whether

subsidies at even ages lead to more cancer diagnoses at even ages.

A limitation of the insurance claims data is the incomplete record of screening par-

ticipation. This is because most screenings conducted at odd ages are paid entirely

out-of-pocket and therefore do not generate any insurance claim. As a result, the screen-

ings at odd ages are not captured in the administrative data. In contrast, survey data do

not suffer from this limitation, since it captures all the self-reported screening take-up.

For this reason, this study relies on survey data for analyzing screening take-up and uses

claims data primarily to investigate subsequent cancer diagnoses and preventive care use.

23Even individuals who do not formally register can be identified if they visit a hospital for cancer
treatment at least once. For CRP-registered cancer patients, the coinsurance rate is reduced to 5%. For
unregistered patients, it drops to 10%. These reductions apply only to visits related to the registered
condition. Unrelated visits are not covered by the program.
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5 Results

5.1 Effect on screening take-up

5.1.1 Effect on biennial screenings

Subsidy eligibility leads to large increases in screening participation. Figures 1a, 1b,

1c, and 1d show that across general, stomach, breast, and cervical screenings, participa-

tion is consistently higher in the treatment group (even ages) than in the control group

(odd ages). Using Equation (1), I estimate that subsidy eligibility raises one-year par-

ticipation by 18.7 percentage points (183%) for general screening, 19.0 percentage points

(229%) for stomach screening, 19.1 percentage points (283%) for breast screening, and

16.4 percentage points (295%) for cervical screening. These effects correspond to arc

elasticities of –0.48, –0.65, –0.72, and –0.60, respectively. The magnitudes are substan-

tially larger than those documented in seminal studies of preventive care. The RAND

Health Insurance Experiment, for example, reported arc elasticities of –0.17 to –0.43 for

preventive services (Newhouse, 1993). The Oregon Medicaid Experiment found 41–63%

increases in mammography and Pap tests (Finkelstein et al., 2012). A related study of

screening subsidies in Korea estimated an arc elasticity of –0.47 for stomach and breast

screenings (Kim and Lee, 2017). The larger responses in my setting are partially due to

shift in screening timing, which I examine in the next section.

Additional evidence from the subsidy cutoff age is reported in Appendix Section ??.

Participation rises sharply at the age threshold where subsidies begin, consistent with a

causal effect of eligibility. Robustness checks using alternative specifications, additional

covariates, and different analytical samples confirm that these findings are not driven by

functional form assumptions, age controls, or sample composition.

5.1.2 Intertemporal substitution

One mechanism through which subsidies affect participation is intertemporal substi-

tution. The knowledge of subsidy schedule allows forward-looking individuals to tempo-

rally reallocate screenings to subsidized years. Such timing shifts can widen the take-up
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gap between subsidized and unsubsidized ages without any net increase in participation.

While estimating the magnitude of intertemporal substitution is challenging due to the

lack of variation in targets, this study provides suggestive evidence that biennial subsidies

generate both net increases in participation and shifts in screening timing, with advanc-

ing screenings more common than delaying them. Appendix Section D provides detailed

analysis supporting these findings. Here, I summarize the key findings.

First, evidence for a net increase comes from the recommended starting age for screen-

ings. If individuals were substituting from subsidized (even) to unsubsidized (odd) ages,

one would expect a sharp drop in participation at unsubsidized ages, immediately fol-

lowing the cutoff as biennial subsidies become available. I do not find such decline. A

possible concern is compositional changes in screening participants at the cutoff. If more

people start to participate at the cutoff regardless of subsidy eligibility, this could poten-

tially mask drop in take-up at unsubsidized ages. To address this, I restrict the sample

to individuals who participated in screenings before age cutoff and track their behavior.

Among this group, participation at subsidized ages rises significantly, while participation

at odd ages remains stable relative to the pre-cutoff period. This pattern indicates a

genuine net increase in take-up.

Second, evidence for shifts in timing comes from the distribution of screening dates

within subsidized years. The monthly distribution of screening take-up reveals significant

bunching in December of subsidized ages, consistent with individuals advancing screen-

ings before subsidies expire. In contrast, there is no similar bunching in January, which

would be expected if individuals delay screenings from unsubsidized ages and receive them

immediately after subsidies become available. This asymmetry suggests that advancing

screening is more common than delaying them. Based on these results, I interpret bien-

nial subsidies as reflecting a combination of an increase in overall screening take-up and

shifting screening forward by several months.
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5.1.3 Cross spillover

I also document spillovers across different screening types. Screenings not subject to

the biennial subsidy, such as annually subsidized liver and colorectal screenings or un-

subsidized prostate and lung screenings, have no reason to display systematic differences

in take-up between even and odd ages. However, Figure 1e, 1f, 1g, and 1h show that

they nonetheless exhibit higher take-up at even ages. Table 4 estimates the differences

in take-up using the specification from Equation (1): take-up increases by 2.7 percentage

points (94%) for liver, 3.3 percentage points (124%) for colorectal, 0.7 percentage points

(81%) for prostate, and 0.6 percentage points (67%) for lung screening. There is also

spillovers arising due to different age thresholds, such as discontinuous increase in cervi-

cal and colorectal screening take-ups at age 40, despite their subsidies starting from age

30 and 50, respectively. Appendix Section E provides estimates of these spillovers.

A likely mechanism of cross spillover is bundling of multiple screenings during a single

hospital visit, reflecting shared fixed costs (e.g., time, travel, or fasting requirements for

medical tests). Appendix Table A10 shows that 96% of individuals receiving both general

and stomach screenings do so on the same day. Additionally, screenings not performed

on the same day tend to occur after the general screening, consistent with doctors rec-

ommending further tests. Between doctors and patients, patients are more likely to be a

driver of this bundling behavior according to selection patterns presented in A12 in Ap-

pendix Section E. Individuals who, after getting a biennial screening, further participate

in annual or unsubsidized screenings are healthier and from higher socioeconomic back-

grounds than those who only get a biennial screening. These results echo prior findings

on cross spillover across vaccinations (Carpenter and Lawler, 2019; Humlum et al., 2024).

5.2 Selection into screening

5.2.1 Cross-sectional inference

A common criticism against health screening programs is that they tend to attract

relatively healthy individuals, while those at higher risk, such as people with lower in-
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come or education levels, are less likely to participate (Pill et al., 1988; Waller et al., 1990;

Bender et al., 2015; Jones et al., 2019).24 This pattern can reduce the effectiveness of

screenings and increase the likelihood of false positives, overdiagnosis, and overtreatment

(Kowalski, 2023; Welch et al., 2016; Autier et al., 2017). As a result, improving participa-

tion among higher-risk individuals is crucial for maximizing the benefits and minimizing

the harms of screening programs.

To understand whether subsidized screenings successfully reach high-risk individuals,

I analyze the types of people whose behavior changes in response to the policy. These

individuals, who would not have been screened without subsidies but opt in when screen-

ings are subsidized, are referred to as compliers, following the terminology of Imbens and

Angrist (1994) and Angrist et al. (1996). Understanding who these compliers are is essen-

tial, as they represent the population whose behavior is most responsive to the policy and

thus critical for assessing its effectiveness. I compare compliers with two other groups:

always-takers, who always participate even in the absence of subsidies, and never-takers,

who never participate even in the presence of subsidies.25 Since the goal of screening is to

detect diseases at an early stage, the policy should ideally target unhealthy individuals

who are at higher risk of having undiagnosed conditions.

One approach to characterizing compliers relative to always-takers is to restrict the

analytical sample to screening participants and compare treatment and control groups.26

Under this restriction, the participants in the treatment group are either always-takers or

compliers, while the participants in the control group must be always-takers. The differ-

ences between participants in the treatment and the control come from group composi-

24The pattern of preventive care take-up by healthier individuals extends beyond screenings. Similar
selection pattern is observed in the use of vaccinations, contraception, workplace wellness programs,
and vitamin supplements (Thomas et al., 2021; Dalton et al., 2020; Jones et al., 2019; Oster, 2020). In
developing countries, selection in response to the price of preventive health products has been shown for
antimalarial medications, bednets, and water purification kits (Cohen and Dupas, 2010; Cohen et al.,
2015; Dupas, 2014; Tarozzi et al., 2014; Ashraf et al., 2010).

25I impose monotonicity assumption, meaning that subsidies weakly increase the probability of screen-
ing. This assumption rules out defiers, who would get screened only in the absence of a subsidy.

26Complier characterization is straightforward in settings with one-sided noncompliance. For exam-
ple, in a setting with only always-takers but no never-takers, control group can be used to distinguish
between always-takers and compliers. Participants in the control group are always-takers, while the
nonparticipants are untreated compliers. Similar comparison can be made in the treatment group when
there are only never-takers but no always-takers.
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tion, specifically, the presence of compliers in the treatment group. Since all individuals in

this restricted sample are screening participants, any observed differences cannot reflect

treatment effects but instead reflect pre-existing characteristics. Similarly, restricting the

sample to nonparticipants and comparing treatment and control allows for comparisons

between untreated compliers and never-takers.27

Figure 2a, 2b, and 2c show that, compared to always-takers, compliers are more likely

to be diagnosed with a stomach-related disease, have lower household income, and are less

likely to be college graduates. Figure 2a plots the share of stomach screening participants

who report finding a stomach-related disease.28 Diagnosis rates are consistently higher

among participants in treatment than those in control, which suggests that compliers

have worse underlying health conditions prior to screening than always-takers. Similarly,

Figure 2b and 2c show that screening participants in the treatment group have lower

household income and are less likely to have a college degree. Together, these patterns

imply that compliers are systematically of lower socioeconomic status relative to always-

takers.

While the figures illustrate the selection patterns intuitively, they are limited to qual-

itative comparisons. To formally test and quantify the selection patterns observed in the

descriptive figures, I estimate the average characteristics of compliers, always-takers, and

never-takers in three steps. First, I estimate the characteristics of always-takers using

screening participants in the control group. Due to the exogeneity of the even/odd sub-

sidy rule, always-takers in the treatment group are comparable to the always-takers in

the control group. Similarly, I estimate the characteristics of never-takers using nonpar-

ticipants in the treatment group. Second, I infer complier characteristics from the pool of

screening participants in the treatment group, which is a convex combination of complier

and always-taker characteristics, where the relative weights are derived from first-stage

27In this analysis, I use the term “always-takers” or “never-takers” in the cross-sectional sense. In
a given year, participants in the control group are “always-takers” in the sense that if they were in
treatment group this year, the must have also participated in screening. I do not use panel structure in
this analysis, that is, whether an individual actually participates all the years during the study period.
I use the panel structure for selection analysis in the next section.

28The survey asked screening participants whether they had been diagnosed with any condition
through screening. For stomach screening, this includes cancer as well as less severe conditions, such as
inflammation or ulcers. See Appendix Section F for common diagnoses.
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estimates of subsidy effects on take-up. Combining the first-stage estimates from Table 3

with the characteristics of always-takers from the first step, I back out the characteristics

of compliers. Appendix Section G provides an estimating equation, which includes a sat-

urated model of screening take-up and treatment group indicator variable, and detailed

steps for estimation. This approach allows me to statistically estimate and compare the

characteristics of all three compliance groups. It also distinguishes between compliers in

the treatment group, treated compliers, and compliers in the control group, untreated

compliers. Finally, I test whether the ratios of treated compliers to always-takers and

untreated compliers to never-takers are equal to one. By comparing always-takers to

treated compliers, and never-takers to untreated compliers, I remove any causal effect of

screening and isolate the selection effect. This method was also used by Kim and Lee

(2017), Einav et al. (2020), and Kowalski (2023) to characterize compliers in the health

screening context.

Table 5 reports the estimated characteristics of always-takers, never-takers, treated

compliers, and untreated compliers. It also presents the ratio of treated compliers to

always-takers and of untreated compliers to never-takers for comparison where the null

hypothesis is that the ratio is equal to one. Figure 3a plots the ratio of treated compliers

to always-takers for each outcome, along with 95 percent confidence intervals. Regarding

screening diagnoses, compliers are 68 percent more likely to report being diagnosed with

a stomach-related disease through stomach screening than always-takers, suggesting that

compliers face higher underlying health risks.29 In contrast, differences in diagnosis rates

for breast, cervical, and colorectal screenings are not statistically significant.30

The socioeconomic characteristics of compliers further underscore their relative dis-

advantage. Compliers have 40 percent lower individual income and 12 percent lower

household income compared to always-takers. Furthermore, compliers are 13 percent less

29This pattern is not driven by differences in the quality or quantity of testing. Both subsidized and
unsubsidized screenings are available at the same hospitals and are typically administered by the same
medical staff, suggesting minimal variation in test quality. Moreover, as shown in Table A14 (Appendix
Section G), always-takers actually receive more medical tests than compliers, including unsubsidized pro-
cedures such as sonograms and CT scans. Therefore, the higher disease detection rate among compliers
is not attributable to more extensive or higher-quality testing.

30There were too few disease diagnoses from liver, lung, and prostate screenings, which renders com-
parison infeasible.
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likely to be employed and 40 percent less likely to have a college degree. These pat-

terns indicate that the subsidy program induces participation of individuals from lower

socioeconomic backgrounds who have previously been financially constrained from access-

ing screening. When combined with the elevated diagnosis rates, these findings suggest

that compliers are not only more economically disadvantaged but also at higher health

risk. This pattern echoes findings in Bitler and Carpenter (2016), which show that pro-

hibiting mammogram deductibles led to increased screening take-up, particularly among

low-income women and high school dropouts.

In terms of health behaviors, compliers are neither more nor less likely to smoke, drink,

or exercise compared to always-takers. To account for substantial gender differences in

these behaviors, I report results separately for male and female samples.31 Table 5 and

Figures 3a and 3b present the characteristics of male compliers, while Appendix Section

G shows similar results for female compliers. Although the levels differ across genders, the

comparison patterns between compliers and always-takers are consistent. Both among

men and women, I find no statistically significant differences in health behaviors between

compliers and always-takers.32

Figure 3b provides the relative characteristics of untreated compliers compared to

never-takers. While the selection based on socioeconomic status is not pronounced, com-

pliers demonstrate clear positive selection in health behaviors.33 Specifically, compliers

are less likely to smoke and more likely to exercise. Compared to always-takers, male

compliers shown in Table 5 are 29 percent less likely to smoke and 18 percent more likely

to do vigorous exercise, while female compliers shown in Table A13 are 65 percent less

likely to smoke and 29 percent more likely to do vigorous exercise. This pattern of pos-

itive selection relative to never-takers is also observed from prior studies on screenings

(Einav et al., 2020; Kowalski, 2023; Jones et al., 2019). These findings align with broader

31For example, smoking is prevalent primarily among men: 39 percent of men are smokers compared
to just 3 percent of women. Similarly, 13 percent of men report daily alcohol consumption, while only 1
percent of women do.

32Any causal effect of screening on health behaviors would cancel out in this comparison, as both
treated compliers and always-takers receive screenings.

33Note that it is not possible to infer the health outcomes of never-takers through screening results,
since they do not get screened by definition.
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evidence on the correlation of health behaviors, in which individuals who engage in one

form of preventive behavior are more likely to engage in others (Oster, 2020; Cutler and

Lleras-Muney, 2010).

A related study by Einav et al. (2020) examines breast cancer screening around age

40 and finds that compliers with clinical guidelines are less likely to have true positive

breast cancer than always-takers, but observes no systematic socioeconomic differences

between the two groups. My findings complement this evidence by highlighting a different

pattern when the treatment is financial incentives, rather than medical recommendations.

In my setting, compliers exhibit a slightly higher risk of stomach disease, and they come

from lower socioeconomic backgrounds than always-takers. Taken together, these studies

suggest that patterns of selection may vary across both health risk and socioeconomic

dimensions, depending on the nature of the intervention and the population under study.34

My findings are more consistent with those of Kim and Lee (2017), who also study

Korea’s National Health Screening Program. While my study leverages biennial subsidies

at even ages covering 90 percent of cancer screening copays, Kim and Lee (2017) examine

the remaining copay waiver at even ages for those below a health insurance premium

cutoff. They find that compliers have higher cancer and all-cause mortality than always-

takers, consistent with negative selection into screening based on health risk. Together,

these studies suggest that lowering the price of screening can effectively attract higher-

risk participants from lower socioeconomic backgrounds who are more likely to benefit

from early diagnoses.

Appendix Section G outlines the detailed methodology for selection analysis and

presents robustness checks. First, around the age 40 eligibility cutoff, individuals starting

screening at age 40 exhibit lower socioeconomic status and higher incidence of stomach

diseases relative to those who begin earlier, consistent with the main findings. Second,

workplace wellness programs in large firms, which often provide annual health screen-

ings, may make some employees always-takers. Although this alternative source of free

34Lawler (2020) examines national meningococcal vaccination recommendation for high school-aged
adolescents and find similar selection pattern with Einav et al. (2020) that the adolescents from house-
holds with high education and high income were more responsive to the recommendation. This finding
suggests that recommendation alone fails to reach those with low socioeconomic status.
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screening does not change the selection results, it may affect the interpretation that in-

dividuals respond to lower prices. Table A15 shows that even among the non-working

population, significant differences in diagnoses and household income remain, suggesting

that workplace wellness programs do not fully account for the observed selection.35

5.2.2 Longitudinal inference

Health screenings are not one-time event, but require repeated take-ups over the life

course. The cross-sectional analysis captures behavior at a point in time, but it does not

address how consistently individuals participate in screening over time. To capture this

dimension, I use the recurring structure of the biennial subsidies to classify individuals

by compliance behavior over a ten-year period (2009-2018).

The unique alternating subsidy schedule creates a repeated experiment every year.

Over 10 years, each person faces five subsidized (even) and five unsubsidized (odd) ages.

I interpret this setting as the one where treatment and control states are observed within

the same individual over time and use experiments at subsidized ages as empirical coun-

terfactuals for the experiments at unsubsidized ages, and vice versa.36 Using 10 years

screening history, I classify individuals into four groups. Always-takers who screen at

both subsidized and unsubsidized ages, compliers who screen at subsidized ages, but not

at unsubsidized ages, defiers who screen at unsubsidized ages, but not at subsidized ages,

and never-takers who screen at neither. This classification assumes stability in compli-

ance behavior over time. In reality, screening behavior may respond to transitory shocks,

such as illness of oneself or of a family member, introducing noise and creating “almost-

compliers” or “almost-always-takers” (Fadlon and Nielsen, 2019; Hodor, 2021; Jeon and

35Jones et al. (2019) find that participants in workplace wellness programs are positively selected and
have better health than nonparticipants. Therefore, workplace wellness program, if anything, underscores
the importance of the public health screening programs that can attract high-risk participants.

36The concept of compliers in Angrist et al. (1996) and Imbens and Angrist (1994) is grounded in the
potential outcomes framework, where individuals are either in a treatment or control group. Compliers
are defined by their unobserved behavior in a counterfactual state. For example, someone who takes up
treatment when assigned to the treatment group but would not have done so if assigned to control is a
complier. In this study, the alternating subsidy schedule creates a unique repeated experiment in which
the same individual is observed across both treatment (even ages) and control (odd ages) conditions over
time. This panel structure allows the use of observed screening behavior at odd ages as a proxy for the
counterfactual to behavior at even ages, and vice versa.
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Pohl, 2017; Hoagland, 2025; Garćıa-Gómez et al., 2013). To the extent that compli-

ance behavior persists over time, this classification offers useful insight into selection into

screening.

I restrict the sample to 5,701 individuals who are aged 40 or above and are observed

in all 10 years.37 I define the empirical screening probabilities at even ages as follow.

Prpscreen evenqi “
1

5

ÿ

k

1tscreenik “ 1u, k even (2)

The term screenik equals one if individual i of age k participated in a screening. The

probability of screening at odd ages can be calculated in a similar way. Probabilities

range from 0 to 1 in 0.2 increments. Figure 4 shows the joint distribution of even and

odd screening probabilities. For exhaustive definition, I arbitrarily delineate the four

groups and define those with (Prpscreen evenq ą 0.5, Prpscreen oddq ą 0.5) as always-

takers, those with (Prpscreen evenq ă 0.5, Prpscreen oddq ą 0.5) as defiers, those

with (Prpscreen evenq ă 0.5, Prpscreen oddq ă 0.5) as never-takers, and those with

(Prpscreen evenq ą 0.5, Prpscreen oddq ă 0.5) as compliers. Based on these definitions,

around 29.4 percent falls in the category of compliers, 65.9 percent are never-takers, 2.5

percent are always-takers, and 2.2 percent are defiers.

Table 6 compares characteristics across compliance groups. The patterns are highly

consistent with the ones from cross-sectional analysis. Column 5 provides comparison

between compliers and always-takers. Panel A shows compliers are 41 percent more likely

to find a stomach-related disease than always-takers. This is consistent with negative

selection in income and education as shown in Panel B. I do not find significant differences

in health behaviors, except that compliers are slightly less likely to exercise than always-

takers.38

Comparison with never-takers also shows consistent pattern. Panel C shows compliers

display better health behaviors than never-takers. They are less likely to smoke and more

37Although the dataset spans 11 years, I exclude the first year, 2008, because the data collection start
date varies across individuals in that year.

38Consistent with the cross-sectional analysis, I only use male sample for health behaviors to account
for large differences in smoking and drinking behaviors between male and female.
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likely to exercise. As shown in the cross-sectional analysis, the differences in socioeco-

nomic status presented in Panel B are ambiguous and do not indicate clear evidence of

either positive or negative selection.

The panel approach identifies defiers, which the cross-sectional analysis cannot detect

due to the monotonicity assumption. The estimated share of defiers is small, supporting

the plausibility of the monotonicity assumption. One plausible mechanism is spousal

spillover. Some individuals may get screened at unsubsidized ages if their spouse is eligible

(Kim et al., 2024). To examine this, I restrict the sample to 4,704 married individuals

and calculate the share whose age is even when their spouse’s age is odd, or vice versa.

Consistent with the hypothesis, this off-age combination is most common among defiers

and least common among compliers.

The comparison between compliers and defiers provides insight into compliance through

the intertemporal substitution channel. On average, both groups undergo the same num-

ber of screenings, but the timing differs. Compliers concentrate participation at subsi-

dized ages, while defiers do so at unsubsidized ages. Movement from defiers to compliers

therefore largely reflects a shift in timing rather than an increase in overall screenings.

Column 6 of Table 6 shows that the characteristics of compliers relative to defiers mir-

ror those observed relative to always-takers. In both cases, compliers are more likely to

be diagnosed with stomach disease and to come from lower socioeconomic backgrounds.

This consistency suggests that the selection patterns among compliers are similar whether

participation reflects net increases in screening or intertemporal substitution across years.

5.3 Effect of health screenings

This section examines the causal effects of health screenings on three categories of out-

comes. First, I analyze cancer diagnosis, focusing on whether screening increases cancer

detection at an early stage. Second, I evaluate changes in preventive care use, specifi-

cally, treatment of precancerous conditions, management of cardiovascular risk factors,

and diagnoses of osteoporosis and tuberculosis, which are two conditions examined in the

general screening. Finally, I examine impact on mortality.
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The analysis uses the Standard Cohort Database and the Customized Cohort Database

from the National Health Insurance Service (NHIS), which include comprehensive records

on cancer diagnoses, health care utilization, and mortality. Importantly, cancer diagnoses

in these data are confirmed true positive cases, not including false positive results. As

discussed in section 4, the insurance claims data have incomplete records on screening

participation. As a result, I estimate intent-to-treat (ITT) effects using the reduced form

specification presented in Equation (1). Local average treatment effects (LATE) can be

derived manually by dividing ITT estimates by the increases in take-up rates reported

in Table 3, which are estimated using survey data. The analytical sample is restricted to

individuals aged 40 to 89.

5.3.1 Effect on cancer diagnoses

Cancer can be detected either through routine screening at an early, asymptomatic

stage or after the onset of symptoms. When cancer is diagnosed due to noticeable dis-

comfort, it is more likely to be at an advanced stage, making treatment more difficult,

invasive, and costly. The primary goal of screening is early detection, which enables

more effective, less invasive, and less costly treatment. Evidence from numerous large

clinical trials and guideline reviews demonstrates that early detection through screen-

ing can reduce cancer-specific mortality across multiple cancer types (Tabár et al., 2011;

Atkin et al., 2010; Bretthauer et al., 2022; Chen et al., 2003; Team, 2011; Andriole et al.,

2009; Siu and Force, 2016; Curry et al., 2018a; Davidson et al., 2021; Krist et al., 2021;

Grossman et al., 2018).

I find that subsidy eligibility leads to a significant increase in cancer diagnoses.39

Figure 5b, 5c, and 5d plot detection rates for stomach, breast, and cervical cancer at

each age, regardless of whether detected through preventive screening or not. Detection

rates are consistently higher in the treatment group beginning at age 40, consistent with

subsidy eligibility. Table 7 first rows for each cancer report ITT effects. Subsidy eligibil-

ity increases diagnosis rates by 0.077 percentage points (41%) for stomach cancer, 0.05

39In this study, cancer refers to both invasive and in-situ cases unless otherwise specified. False
positive results and benign tumors are excluded.
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percentage points (11%) for breast cancer, and 0.02 percentage points (13%) for cervical

cancer.

Subsidy eligibility also increases diagnoses for cancers not directly targeted by bien-

nial subsidies. Figure 5e, 5f, 5g, and 5h show detection rates for liver and colorectal

cancers, which were subsidized annually, and for lung and prostate cancers, which were

not subsidized. In all four cases, detection rates are higher in the treatment group. Esti-

mated effects indicate that subsidy eligibility increases diagnosis rates by 0.013 percentage

points (16%) for liver cancer, 0.018 percentage points (10%) for colorectal cancer, 0.014

percentage points (15%) for lung cancer, and 0.01 percentage points (6%) for prostate

cancer. Considering all seven cancer types together, subsidy eligibility raises the overall

diagnosis rate by 0.16 percentage points (18%). These patterns suggest that spillover in

screening take-up, examined in Section 5.1, leads to spillover in cancer diagnosis as well.

While the use of separate datasets to estimate participation and cancer diagnoses

complicates the calculation of local average treatment effects (LATE), they can be man-

ually calculated by dividing the ITT estimates by the first-stage increases in screen-

ing take-up from survey data.40 The resulting LATEs are 0.0041 percentage points

p“ 0.00077{0.19q for stomach cancer, 0.0026 p“ 0.0005{0.191q for breast cancer, and

0.0055 p“ 0.00018{0.033q for colorectal cancer, corresponding to 213%, 56%, and 287%

of the respective control group means. These estimates are large relative to other quasi-

experimental evidence.41 For example, Guthmuller et al. (2023) report a LATE of 0.0010

for breast cancer in Europe’s organized screening programs, less than half of my esti-

mate. Similarly, in Kim and Lee (2017), LATEs for stomach and breast cancers were

both around 0.0025, while my estimate for stomach cancer is substantially higher. Since

LATEs capture detection rates among compliers, these results align with my selection

analysis indicating that compliers in this setting are disproportionately high-risk individ-

uals.

The effectiveness of screening in detecting cancer exhibits strong age heterogeneity. At

40These estimates should be interpreted with caution, as differences in data sources and time periods
may introduce bias.

41As emphasized by Angrist and Hull (2023), LATEs provide a more meaningful basis for comparison
across studies than ITT estimates.
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younger ages, effects are small, but they increase sharply with age. In the earlier analysis

of screening participation, I documented a sharp discontinuous increase in take-up at

age 40, when eligibility for subsidized screenings begins (Detailed analysis in Appendix

Section ??). This discontinuity was evident even for cervical and colorectal screenings,

which were subsidized from ages 30 and 50, respectively. By contrast, figures on cancer

diagnosis rates show no corresponding jump at age 40, suggesting that individuals who

initiate screening at this threshold are generally healthy and face relatively low underlying

cancer risk. At older ages, however, the opposite pattern emerges. The effect of subsidies

on screening take-up diminishes, while the effect on cancer detection grows larger.42 This

divergence implies that the chance of detecting cancer through screening, or the LATE of

screening on cancer diagnosis, rises sharply with age. This finding implies that research

designs exploiting discontinuities at recommended starting ages tend to capture effects

among relatively young, low-risk individuals who are less likely to be diagnosed with

cancer (Kadiyala and Strumpf, 2016; Einav et al., 2020). As a result, these designs can

underestimate the broader effectiveness of screening, particularly for older adults, who

account for the majority of cancer cases. 43

Unpacking aggregate cancer diagnoses into in-situ and invasive cases reveals that

screenings disproportionately increase early stage in-situ cancer diagnoses.44 Table 7

shows that screenings increase both invasive and in-situ cancer diagnoses, with relatively

larger effects on in-situ cancers for most sites, except for lung and prostate cancers. The

second and third rows for each cancer in Table 7 report the ITT effects on invasive and

in-situ diagnoses. Once the ITT estimates are normalized by the control group mean,

the percentage increase is generally larger for in-situ cancers, suggesting that screenings

42Two exceptions are breast and cervical cancers. Figure 5c and 5d show that breast cancer incidence
typically rises in the 30s, peaks in the 40s and 50s, and then gradually declines, while cervical cancer
incidence peaks slightly earlier, in the 30s and 40s. These trends are consistent with Korea’s Cancer
Registry data, which includes all cancer diagnoses nationwide (Kang et al., 2020; Chung et al., 2006).

43While early detection in younger individuals may yield more life-years saved per case, the overall
population-level impact of screening is concentrated among older adults, given their higher underlying
cancer risk and greater incidence. Thus, the magnitude of effect observed at guideline start ages may
not generalize across the age distribution.

44In-situ cancers, also referred to as precancer or stage 0 cancer, are characterized by abnormal
cells that have not yet invaded neighboring tissues. It can progress to invasive stages if left untreated.
Although many cancers have an in-situ stage, it is particularly common in breast and cervical cancers.
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disproportionately increase early stage cancer diagnosis.

The pattern of early diagnosis is further supported by higher survival rates among

patients diagnosed in the treatment group. I restrict the sample to individuals diagnosed

with one of the seven major cancers listed in Table 8 and compare their survival rates by

whether the diagnosis occurred in the treatment (even age) or control (odd age) group.

Figure 6 plots survival trajectories from 1 to 10 years post-diagnosis, and Table 8 reports

the commonly used 5-year survival rates. Among 52,962 cancer cases, the 5-year survival

rate is 80.1 percent in the control group versus 81.3 percent in the treatment group, a

1.2 percentage point (1.47%) increase. This difference suggests earlier cancer detection

in the treatment group, consistent with screening-induced lead time. However, this im-

provement in survival should not be confused with reduced mortality, since early diagnosis

can improve survival rates without changing actual lifespan.45 This survival advantage

appears across most cancers, except for lung and prostate cancers. These exceptions are

consistent with prior RCT evidence showing that screening for these two cancer types

does not reliably detect earlier stage disease, explaining why these screenings are not

subsidized by NHIS (Krist et al., 2021; Grossman et al., 2018).46 Table 8 also shows a

larger share of in-situ cancers among treatment group diagnoses, consistent with larger

percentage increase in in-situ cancer diagnoses compared to invasive cancers observed in

Table 7. Taken together, these results indicate that screenings effectively shift diagnoses

toward earlier stages.

5.3.2 Effect on preventive care use

Beyond increasing cancer diagnoses, health screenings also lead to treatment of can-

cer precursors, thereby reducing long-term cancer risk. One key example is Helicobacter

pylori (H. pylori) infection, a well established risk factor for stomach cancer (Polk and

Peek Jr, 2010; Uemura et al., 2001; Butt and Epplein, 2019). During stomach screening,

45This is called “lead time bias” in health screening. Refer to Morrison (1982); Welch et al. (2000);
Duffy et al. (2008); Gordis (2013) and Yang et al. (2021) for detail.

46NHIS began subsidizing lung cancer screening for high-risk individuals only after the study period.
The subsidized test is a low-dose CT scan, whereas during the study period the dominant method for
lung screening was chest X-ray.
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such as gastroscopy, a biopsy sample can be collected to test for H. pylori infection. If

an infection is detected, treatment typically involves a combination of antibiotics and a

proton pump inhibitor, administered orally. I define H. pylori treatment as the concur-

rent prescription of two antibiotic classes and a proton pump inhibitor during a single

hospital visit. Table 9 Panel A shows that subsidy eligibility increases treatment by

0.003 percentage points (15%), suggesting that stomach screening leads to diagnosis and

treatment of the strong stomach cancer precursor.

Colorectal polyps, abnormal tissue growths in the colon or rectum, are another im-

portant cancer precursor. Since most cases of colorectal cancer originate from polyps,

early removal via colonoscopy significantly reduces cancer risk and mortality (Song et al.,

2020; Zauber et al., 2012; Shaukat et al., 2021). Table 9 Panel B shows that subsidy

eligibility increases polypectomy rates by 0.72 percentage point (62%), suggesting that

colonoscopy is not only diagnostic but also preventive through proactive polyp removal.

Health screenings also increase the diagnosis and treatment of cardiovascular risk fac-

tors, such as high blood pressure, diabetes, and high cholesterol, which are examined

during the general screening. Table 9 Panel B shows that subsidy eligibility increases

medication use by 0.05 percentage points (0.19%) for high blood pressure, 0.02 percent-

age points (0.17%) for diabetes, and 0.4 percentage points (3.01%) for high cholesterol.47

The magnitude is larger for high cholesterol drugs compared to the other two conditions,

reflecting the fact that cholesterol levels are less likely to be measured outside of formal

screenings, whereas blood pressure and blood sugar level can be more easily measured

during routine visits to general practitioners. These results suggest that screenings in-

crease the diagnosis of chronic conditions and prompt greater take-up of medication for

disease management.

The general screening program also includes tuberculosis (TB) detection, especially

important in South Korea, which has among the highest TB incidence rates in the OECD

(Cho, 2018). Chest X-rays are used for initial screening, followed by sputum tests and

nucleic acid amplification if abnormalities are detected. TB treatment typically includes

47Appendix Section ?? provides a list of medications for high blood pressure, diabetes, and high
cholesterol and reports the impact on each drug.
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medications, including isoniazid, rifampin, pyrazinamide, and ethambutol. Table 9 Panel

C shows that subsidy eligibility had no significant change in TB-related prescriptions.

Osteoporosis is another target of the general screening program, particularly among

women after menopause. Screening includes bone density tests at ages 54 and 66, with

first-line treatment comprising calcium/vitamin D supplementation and bisphosphonates

medication to reduce fracture risk (Curry et al., 2018b). Table 9 Panel C shows that

subsidy eligibility led to a 0.1 percentage points (4%) increase in osteoporosis medication

prescription. Interestingly, although bone density screening is subsidized only for women,

medication uptake increases for both men and women, reflecting spousal spillover in

screening participation (results available upon request).

5.3.3 Effect on mortality

A central objective of health screening is to reduce mortality through early detection

and treatment. Increases in survival rates following diagnosis do not necessarily indicate

real improvements in health outcomes. This is because earlier diagnosis can mechan-

ically lengthen the time from diagnosis to death without extending actual lifespan, a

phenomenon known as lead-time bias. Survival rate analysis, which measures the pro-

portion of patients alive a certain number of years after diagnosis, is susceptible to this

bias. The most extreme form of lead-time bias is overdiagnosis, where screening detects

cancers that would not have caused symptoms or death during an individual’s lifetime.

These cases inflate survival statistics, even though they may not reduce actual mortality.

For this reason, survival rate analysis can be misleading.

To properly evaluate the health impact of screening, it is essential to conduct a mor-

tality analysis, which compares death rates between the treatment and control groups,

regardless of whether individuals were diagnosed with cancer. Unlike survival analysis,

mortality analysis is not affected by lead-time bias or overdiagnosis and provides a more

accurate estimate of the population-level benefits of screening. This section examines the

short-run ITT effects of screening on one-year mortality. Due to the alternating structure

of the subsidy program, this analysis is restricted to immediate effects within a one-year
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window and cannot capture potential longer-term benefits of screening.

Table 10 presents the results of the one-year mortality analysis. The baseline mortal-

ity rate in the control group is 0.91 percent. Treatment group exhibits 0.005 percentage

points (0.53%) lower mortality, but the difference is not statistically significant. When

decomposing deaths by cause, the estimates show lower mortality in the treatment group

from overall cancer as well as from individual cancers such as stomach or breast can-

cer, but these differences are likewise not statistically significant. Given the low baseline

mortality and the short follow-up period, these results are not unexpected. Most can-

cers develop and progress over a longer time horizon, and reductions in mortality from

early detection typically take several years to materialize. As such, the lack of a short-

term mortality effect does not imply that screening is ineffective. Rather, it reflects the

difficulty of detecting mortality improvements in the short term, particularly in a gen-

eral population setting. Longer follow-up would be required to assess the full impact of

screening on mortality outcomes.

6 Conclusion

This paper studies selection into health screenings and their causal effects using quasi-

random variation from South Korea’s National Health Screening Program, which subsi-

dizes 90–100% of screening costs every other year at even-numbered ages. Using survey

and insurance claims data, this study has shown that compliers with the subsidies have

lower socioeconomic status and poorer health conditions than those who always par-

ticipate regardless of subsidies. Moreover, subsidy eligibility increases both early- and

late-stage cancer diagnoses and treatment for cancer precursors and risk factors for cardio-

vascular diseases. These results suggest that public health programs offering subsidized

screenings can target high-risk individuals and promote cancer diagnoses and preventive

care use.

A policy implication is that providing subsidized screenings not only increase partici-

pation, but also improve targeting of health screenings, particularly among low SES pop-
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ulations. This study suggests that blanket subsidies, as opposed to subsidies conditional

on low income, are effective in improving access among people from low socioeconomic

backgrounds. This study also showed that bundling screenings such that they can be

received in a single hospital visit can help increase participation in screenings. It can also

make subsidies more salient, as people perceive the total amount of subsidies available

for various screenings.

An open question is the long-term effects of screenings. The current even/odd age-

based design does not allow examining long-term effects due to alternating subsidies.

However, to fully capture the benefits of screenings, it is important to examine long-

term effects, as benefits of screenings may take time to materialize. Important long-run

outcomes to examine are decrease in late-stage cancers, mortality, and health care expen-

ditures. The short-term effects from this study have shown that screenings disproportion-

ately increase early-stage cancer diagnoses. If these early diagnoses represent prevention

from progress to late-stage cancers, there should be decline in late-stage cancers in the

long run. Failure to find decline in late-stage diagnoses would imply overdiagnosis, that

is, detecting early-stage cancers that would not have caused harm during one’s lifetime.

Similarly, our ultimate goal would be whether screening actually led to decline in mortal-

ity. Finally, screenings increase health care spending in the short-run, due to follow-up

testing and treatment. We need to find out if this leads to long run drop in spending.
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7 Tables

Table 1: Screening subsidy schedule

Biennial subsidy Annual subsidy Unsubsidized

General Stomach Breast Cervical Liver Colorectal Lung Prostate

Frequency 2 years 2 years 2 years 2 years 0.5 year 1 year

Subsidy starting age 40 40 40 30 40 50

Subsidy amount 100% 90% 90% 100% 90% 90% 0% 0%

Full costs ($) 50 65 40 15 90 10 100 20

Target Female Female High risk
group

Male

Subsidized medical tests Gastroscopy,
biopsy

Mammogram Pap smear Ultrasound Fecal
occult

blood test,
colonoscopy,

biopsy

Notes: The table summarizes the National Health Screening Program (NHSP) subsidy schedule. Biennial screenings are subsidized in a
calendar year with even-numbered ages (current year minus birth year), annual screenings every year, and unsubsidized screenings are not
covered. Liver screening is offered up to twice per year for high-risk individuals. The minimum eligible age for cervical screening was lowered
from 30 to 20 in 2016. Colorectal screening was biennial at even-numbered ages from age 50 until 2011, then annual thereafter. Colonoscopy
is subsidized only after a positive fecal occult blood test (FOBT). Full costs reflect 2018 NHSP-set prices in USD.

Table 2: Balance table

(1) (2) (3)

Treatment (even age) Control (odd age) Conditional differences

Age 58.697 59.240 -
(12.532) (12.353) -

Female 0.530 0.532 –0.002*
(0.499) (0.499) (0.001)

Currently married 0.799 0.798 –0.0011
(0.401) (0.402) (0.0008)

Years of education 10.320 10.227 –0.003
(4.510) (4.538) (0.008)

Working status 0.610 0.608 –0.003*
(0.488) (0.488) (0.001)

Individual income 1446.3 1425.7 2.762
(2081.6) (2068.1) (5.185)

Household income 4104.4 4086.7 3.221
(3708.6) (3737.9) (14.267)

Own a house 0.734 0.737 –0.0002
(0.442) (0.441) (0.0011)

Number of household members 3.067 3.051 –0.004
(1.317) (1.317) (0.003)

N 54274 52909
Share (0.51) (0.49)
F(8, 15939) 1.65

(0.10)

Notes: The table reports conditional balance between the treatment group (even-aged) and the control group (odd-aged) in the survey sample
of individuals aged 40–89. Column 3 shows treatment–control differences conditional on 5-year linear age splines. Individual and household
incomes are in 10,000 Korean Won. Standard errors are clustered at the individual level and reported in parentheses. A */**/*** indicates
significance at the 10/5/1% levels.
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Table 3: Effect of subsidies on take-up

(1) (2) (3) (4)

General Stomach Breast Cervical

treat 0.187*** 0.190*** 0.191*** 0.164***
(0.003) (0.003) (0.004) (0.003)

N 107183 107183 56923 56923
Adj R2 0.061 0.069 0.080 0.074
F-statistic 4804 4830 2904 2520

Sample age range [40, 89] [40, 89] [40, 89] [30, 89]
Subsidy starting age 40 40 40 30
Age controls Y Y Y Y
Control group mean 0.102 0.083 0.067 0.056
Percentage increase 183 229 283 295

Notes: The table reports the effect of biennial subsidies on screening take-up, comparing treatment (even-aged) and control (odd-aged) groups
in the survey data. The variable treat equals one if one has an even age and eligible for subsidized screenings. The sample includes ages
40–89 for general, stomach, and breast screenings, and 30–89 for cervical screening. Econometric specification is given in Equation (1) and
control for 5-year linear age splines. Standard errors are clustered at the individual level and reported in parentheses. A */**/*** indicates
significance at the 10/5/1% levels.

Table 4: Cross spillover across different screening types

(1) (2) (3) (4)

Annually subsidized Unsubsidized

Liver Colorectal Prostate Lung

treat 0.027*** 0.033*** 0.007*** 0.0062***
(0.001) (0.001) (0.001) (0.0007)

N 107183 107183 50260 107183
Adj R2 0.008 0.011 0.002 0.002

Sample age range [40, 89] [40, 89] [40, 89] [40, 89]
Subsidy starting age 40 50
Age controls Y Y Y Y
Control group mean 0.028 0.027 0.009 0.009
Percentage increase 94 124 81 67

Notes: The table reports cross-spillover effects for annually subsidized screenings (liver, colorectal) and unsubsidized screenings (prostate,
lung) using the survey data. The variable treat equals one if one has an even age and eligible for subsidized screenings. The sample includes
ages 40–89. Econometric specification is given in Equation (1). Estimates are conditional on 5-year linear age splines. Standard errors are
clustered at the individual level and reported in parentheses. A */**/*** indicates significance at the 10/5/1% levels.
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Table 5: Compliers with subsidies

(1) (2) (3) (4) (5) (6)

Average values Ratios

Always-takers Treated
compliers

Untreated
compliers

Never-takers CP1{AT CP0{NT

Panel A. Diagnoses
Stomach 0.174 0.293 - - 1.684*** -

(0.006) (0.008) - - (0.084) -
Breast 0.018 0.022 - - 1.228 -

(0.003) (0.003) - - (0.354) -
Cervical 0.067 0.061 - - 0.906 -

(0.007) (0.006) - - (0.154) -
Colorectal 0.212 0.252 - - 1.190 -

(0.011) (0.023) - - (0.161) -

Panel B. SES
Individual income 1741 1037 1098 1341 0.596*** 0.818***

(48) (47) (45) (36) (0.029) (0.027)
Household income 4985 4379 4425 4209 0.878*** 1.051**

(84) (87) (108) (66) (0.018) (0.021)
Years of education 10.393 10.081 10.080 9.795 0.970*** 1.029***

(0.092) (0.095) (0.095) (0.079) (0.009) (0.007)
College graduate 0.151 0.090 0.099 0.097 0.596*** 1.021

(0.009) (0.008) (0.008) (0.007) (0.057) (0.069)
Working status 0.713 0.619 0.640 0.670 0.868*** 0.954***

(0.010) (0.012) (0.013) (0.009) (0.016) (0.014)

Panel C. Health behaviors
Current smoker 0.304 0.283 0.275 0.390 0.932 0.706***

(0.017) (0.020) (0.021) (0.015) (0.067) (0.042)
Everyday smoker 0.287 0.273 0.254 0.376 0.950 0.677***

(0.017) (0.019) (0.021) (0.015) (0.070) (0.045)
Current drinker 0.824 0.815 0.802 0.781 0.989 1.028

(0.014) (0.016) (0.018) (0.012) (0.020) (0.020)
Everyday drinker 0.158 0.148 0.179 0.164 0.936 1.089

(0.012) (0.014) (0.016) (0.010) (0.095) (0.091)
Vigorous exercise 0.368 0.335 0.354 0.299 0.910* 1.183**

(0.014) (0.016) (0.021) (0.011) (0.049) (0.073)
Moderate exercise 0.540 0.505 0.524 0.444 0.935* 1.180***

(0.014) (0.017) (0.024) (0.011) (0.039) (0.056)
Walking 0.829 0.823 0.808 0.786 0.992 1.029

(0.011) (0.014) (0.019) (0.009) (0.021) (0.025)

Notes: The table reports average values of screening diagnoses, socioeconomic status, and health behaviors among always-takers (AT), never-
takers (NT), treated compliers (CP1), and untreated compliers (CP0) using the survey data. Treated compliers are compliers in the treatment
group who participate in screening; untreated compliers are compliers in the control group who do not. Averages are calculated using Equation
(5) in Appendix Section G. Diagnoses are not reported for untreated compliers and never-takers, as they do not receive screening. Health
behaviors are calculated using the male sample to account for vast gender differences. Appendix Section G reports female values. Null
hypotheses for ratios are H0 : CP1{AT “ 1 and H0 : CP0{NT “ 1. All averages and ratios are measured at age 60. Standard errors
are calculated using bootstrap with 500 replications, clustered at the individual level, and reported in parentheses. A */**/*** indicates
significance at the 10/5/1% levels.
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Table 6: Compliers with subsidies using panel information

(1) (2) (3) (4) (5) (6) (7)

Average values Ratios

Always-
takers

Compliers Defiers Never-
takers

CP/AT CP/DF CP/NT

Panel A. Diagnoses
Stomach 0.181 0.256 0.189 - 1.413*** 1.355** -

(0.018) (0.007) (0.020) - (0.143) (0.146) -
Breast 0.015 0.020 0.022 - 1.303 0.885 -

(0.007) (0.003) (0.011) - (0.653) (0.452) -
Cervical 0.061 0.058 0.058 - 0.950 0.997 -

(0.015) (0.005) (0.024) - (0.249) (0.417) -
Colorectal 0.183 0.260 0.212 - 1.423* 1.226 -

(0.030) (0.013) (0.032) - (0.248) (0.197) -

Panel B. SES
Individual income 2688 1043 2405 1288 0.388*** 0.434*** 0.810***

(247) (37) (222) (28) (0.038) (0.043) (0.034)
Household income 6093 3999 5587 3764 0.656*** 0.716*** 1.063***

(308) (67) (284) (46) (0.035) (0.038) (0.022)
Years of education 12.184 9.876 11.486 9.585 0.811*** 0.860*** 1.030**

(0.312) (0.098) (0.349) (0.075) (0.022) (0.027) (0.013)
College graduate 0.270 0.123 0.291 0.142 0.456*** 0.423*** 0.869**

(0.039) (0.008) (0.038) (0.006) (0.072) (0.062) (0.066)
Working status 0.753 0.560 0.733 0.603 0.744*** 0.764*** 0.930***

(0.030) (0.010) (0.032) (0.007) (0.033) (0.036) (0.020)

Panel C. Health behaviors
Current smoker 0.272 0.268 0.381 0.399 0.984 0.702*** 0.670***

(0.043) (0.016) (0.047) (0.010) (0.165) (0.096) (0.043)
Everyday smoker 0.260 0.257 0.350 0.386 0.991 0.735** 0.667***

(0.042) (0.015) (0.046) (0.010) (0.170) (0.106) (0.044)
Current drinker 0.828 0.775 0.856 0.763 0.935 0.905*** 1.016

(0.042) (0.014) (0.031) (0.008) (0.050) (0.036) (0.021)
Everyday drinker 0.111 0.141 0.175 0.151 1.274 0.807 0.933

(0.027) (0.010) (0.033) (0.006) (0.329) (0.161) (0.078)
Vigorous exercise 0.374 0.300 0.340 0.278 0.802*** 0.883 1.080*

(0.032) (0.010) (0.028) (0.006) (0.074) (0.079) (0.043)
Moderate exercise 0.526 0.474 0.525 0.419 0.902* 0.903* 1.133***

(0.031) (0.010) (0.031) (0.006) (0.056) (0.056) (0.029)
Walking 0.830 0.812 0.818 0.780 0.979 0.993 1.042***

(0.023) (0.007) (0.019) (0.005) (0.029) (0.025) (0.011)

Panel D. Married subsample
Pr(even/odd or odd/even) 0.510 0.483 0.590 0.500

Share 0.022 0.294 0.025 0.659

Notes: The table reports average values of screening diagnoses, socioeconomic status, and health behaviors among always-takers (AT), never-
takers (NT), compliers (CP), and defiers (DF) defined using 10-year health screening history in the survey data. The sample includes 5,701
individuals aged 40 or above in 2009 who participated in the survey all years from 2009–2018. Compliance groups are defined using the
rule shown in Equation (2): compliers participate more than half of the time at subsidized ages and less than half at unsubsidized ages;
always-takers participate more than half at subsidized and unsubsidized ages; never-takers participate less than half at both subsidized and
unsubsidized ages; defiers participate more than half at unsubsidized ages and less than half at subsidized ages. Null hypotheses for ratios are
H0 : CP {AT “ 1, H0 : CP {NT “ 1, and H0 : CP {DF “ 1. Health behaviors are calculated using the male sample to account for vast gender
differences. Appendix Section G reports female values. Pr(even/odd or odd/even) refers to the probability that one’s age and the spouse’s
age are even-odd or odd-even; this is computed for the 4,742 married individuals. Share reports the proportion of each compliance group in
the full sample. Standard errors are clustered at the individual level. They are reported in parentheses. A */**/*** indicates significance at
the 10/5/1% levels.
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Table 7: Effect on cancer diagnosis

(1) (2) (3) (4)

Control group mean ITT Percent relative to control N

Any cancer 0.0091 0.0016*** 17.545 7,449,256
(0.0001)

invasive 0.0084 0.0014*** 17.024 7,449,256
(0.0001)

in-situ 0.001003 0.00020*** 19.490 7,449,256
(0.00003)

Stomach cancer 0.0019 0.00077*** 41.263 7,449,256
(0.00006)

invasive 0.0018 0.00075*** 40.752 7,449,256
(0.00005)

in-situ 0.000048 0.000027*** 55.232 7,449,256
(0.000007)

Breast cancer 0.0047 0.0005*** 10.918 3,503,656
(0.0001)

invasive 0.0043 0.0003*** 7.705 3,503,656
(0.0001)

in-situ 0.000700 0.00016*** 23.548 3,503,656
(0.00004)

Cervical cancer 0.0015 0.00020*** 13.073 3,503,656
(0.00007)

invasive 0.0007 0.00008 10.655 3,503,656
(0.00005)

in-situ 0.000816 0.00014*** 16.718 3,503,656
(0.00004)

Liver cancer 0.0009 0.00013*** 15.576 7,449,256
(0.00004)

invasive 0.0009 0.00013*** 15.283 7,449,256
(0.00004)

in-situ 0.000005 0.000002 43.236 7,449,256
(0.000002)

Colorectal cancer 0.0019 0.00018*** 9.675 7,449,256
(0.00005)

invasive 0.0017 0.00017*** 9.949 7,449,256
(0.00005)

in-situ 0.000227 0.00003* 11.944 7,449,256
(0.00001)

Lung cancer 0.0009 0.00014*** 14.569 7,449,256
(0.00004)

invasive 0.0009 0.00014*** 14.613 7,449,256
(0.00004)

in-situ 0.000007 –0.000001 –20.220 7,449,256
(0.000002)

Prostate cancer 0.0016 0.00010 6.341 3,945,600
(0.00007)

invasive 0.0015 0.00010 6.419 3,945,600
(0.00007)

in-situ 0.000011 –0.0000009 –8.605 3,945,600
(0.0000044)

Notes: The table reports the treatment effect of biennial on cancer diagnoses, using the Customized Cohort Database of national health
insurance claims. For each cancer, the first row reports the overall diagnosis (invasive and in-situ), and the second and third rows report
invasive and in-situ diagnoses separately. “Any cancer” refers to diagnosis of any of the seven cancers listed. The sample includes individuals
aged 40–89. Column 1 shows the control (odd-age) group mean. Column 2 reports ITT estimates of the subsidy effect, comparing treatment
and control groups controlling for age. Column 3 shows the ITT effect as a percentage of the control group mean. Standard errors are clustered
at the individual level and reported in parentheses. A */**/*** indicates significance at the 10/5/1% levels.
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Table 8: Cancer survival rates and share of in-situ cancers

(1) (2) (3) (4)

Control group cancer
diagnoses

Treatment - Control Percent relative to
control group diagnoses

N

Any cancer
5 year survival rate 0.801 0.012*** 1.472 52,962

(0.004)
Share of in-situ cancers 0.106 0.004 4.116 72,744

(0.003)

Stomach cancer
5 year survival rate 0.843 0.020** 2.321 12,697

(0.008)
Share of in-situ cancers 0.024 0.003 13.070 16,500

(0.003)

Breast cancer
5 year survival rate 0.901 0.017** 1.843 12,183

(0.008)
Share of in-situ cancers 0.142 0.020** 13.888 17,037

(0.008)

Cervical cancer
5 year survival rate 0.927 0.019* 2.033 4,475

(0.010)
Share of in-situ cancers 0.536 0.024 4.443 5,608

(0.020)

Liver cancer
5 year survival rate 0.537 0.030 5.659 4,991

(0.019)
Share of in-situ cancers 0.005 0.002 38.979 6,816

(0.003)

Colorectal cancer
5 year survival rate 0.826 0.009 1.146 10,563

(0.010)
Share of in-situ cancers 0.117 0.002 1.872 14,332

(0.007)

Lung cancer
5 year survival rate 0.496 –0.026 –5.315 4,872

(0.019)
Share of in-situ cancers 0.005 –0.002 –36.405 7,318

(0.002)

Prostate cancer
5 year survival rate 0.820 –0.007 –0.804 3,935

(0.016)
Share of in-situ cancers 0.006 –0.001 –20.173 6,207

(0.003)

Notes: The table compares characteristics of cancers diagnosed at subsidized ages (even) with those diagnosed at unsubsidized ages (odd),
using the Customized Cohort Database of national health insurance claims. The sample includes new cancer diagnoses for individuals aged
40–89. For survival rates, the last five years of the panel are excluded from the 5-year survival calculation. Column 1 shows the mean for
cancers diagnosed at unsubsidized ages (odd). Column 2 reports differences in characteristics for cancers diagnosed at subsidized ages (even)
relative to unsubsidized ages (odd), controlling for age with 5-year linear splines. Column 3 shows the relative difference (Column 2) as a
percentage of the odd-age mean. Standard errors are clustered at the individual level and reported in parentheses. A */**/*** indicates
significance at the 10/5/1% levels.
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Table 9: Effect on preventive care use

(1) (2) (3) (4)

Control group mean ITT Percent relative to
control

N

Panel A. Treatment for cancer precursors
Helicobacter pylori 0.00017 0.00003*** 15.194 8,673,954

(0.00001)
Polypectomy 0.01174 0.00724*** 61.617 8,673,954

(0.00009)

Panel B. Medication use for chronic conditions
High blood pressure 0.23884 0.00046*** 0.193 8,673,954

(0.00013)
Diabetes 0.08918 0.00015** 0.171 8,673,954

(0.00006)
High cholesterol 0.13901 0.00419*** 3.014 8,673,954

(0.00011)

Panel C. Medication use for other diseases
Tuberculosis 0.00195 0.00001 0.460 8,673,954

(0.00002)
Osteoporosis 0.02613 0.00106*** 4.049 8,673,954

(0.00007)

Notes: The table reports the treatment effect of biennial subsidies on preventive care use, using the Standard Cohort Database of national
health insurance claims. The sample includes individuals aged 40–89. Column 1 shows the control (odd-age) group mean. Column 2 reports
ITT estimates of the subsidy effect, comparing treatment and control groups controlling for age. Column 3 shows the ITT effect as a percentage
of the control group mean. Standard errors are clustered at the individual level and reported in parentheses. A */**/*** indicates significance
at the 10/5/1% levels.

Table 10: Effect on one-year mortality

(1) (2) (3) (4)

Control group mean ITT Percent relative to
control

N

Total death 0.009084 –0.000048 –0.530 6,740,415
(0.000072)

Cancer death 0.002805 –0.000015 –0.548 6,740,415
(0.000041)

Stomach cancer death 0.000334 –0.000002 –0.515 6,740,415
(0.000014)

Breast cancer death 0.000153 –0.000011 –7.057 3,480,294
(0.000013)

Cervical cancer death 0.000059 0.000008 12.735 3,480,294
(0.000008)

Liver cancer death 0.000434 –0.000015 –3.511 6,740,415
(0.000016)

Colorectal cancer death 0.000287 0.000016 5.715 6,740,415
(0.000013)

Lung cancer death 0.000646 –0.000003 –0.503 6,740,415
(0.000020)

Prostate cancer death 0.000116 0.000003 2.358 3,260,121
(0.000012)

Notes: The table reports the treatment effect of biennial subsidies on one-year mortality, using the Standard Cohort Database of national
health insurance claims. The sample includes individuals aged 40–89. Column 1 shows the control (odd-aged) group mean. Column 2 reports
ITT estimates of the subsidy effect, comparing treatment and control groups controlling for age. Column 3 shows the ITT effect as a percentage
of the control group mean. Standard errors are clustered at the individual level and reported in parentheses. A */**/*** indicates significance
at the 10/5/1% levels.
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8 Figures
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Figure 1: Screening rates

(a) General screening (b) Stomach screening

(c) Breast screening (d) Cervical screening

(e) Liver screening (f) Colorectal screening

(g) Lung screening (h) Prostate screening

Notes: The figures plot take-up rates for 4 biennially subsidized screenings (general, stomach, breast, cervical), 2 annually
subsidized screenings (liver, colorectal), and 2 unsubsidized screenings (lung, prostate) using survey data. Even ages are
shown in red, odd ages in blue. Dashed vertical lines mark the subsidy starting age and age 40. Subsidies for cervical and
colorectal screenings begin at ages 30 and 50, respectively. Dashed lines show 95% confidence intervals.
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Figure 2: Screening participants characteristics

(a) Share of stomach disease diagnosis

(b) Household income

(c) Share of college graduates

Notes: The first figure plots the share of stomach screenings in which participants were diagnosed with a disease. The
sample is restricted to stomach screening participants. Diagnoses are coded using ICD-10, with examples provided in
Appendix Section F. The second and third figures plot average household income (unit: 10,000 Korean Won) and the
share of college graduates among participants in any screening. All figures use survey data. Even ages are shown in red,
odd ages in blue. The dashed vertical line marks the subsidy starting age at 40. Dashed lines also show 95% confidence
intervals.
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Figure 3: Compliers characterization

(a) Comparing compliers with always-takers

(b) Comparing compliers with never-takers

Notes: Figures plot the relative characteristics of compliers to always-takers or never-takers with 95% confidence
intervals, using survey data. Treated compliers are compliers in the treatment group who participate in screenings, while
untreated compliers are compliers in the control group who do not participate in screenings. Average values and ratios
are obtained from the estimation of Equation (5) and reported in Table 5. Standard errors are calculated using bootstrap
with 500 replications clustered at the individual level. Diagnoses indicate whether a screening participant was diagnosed
with a disease. Health behaviors are coded as dummy variables for engaging in such activities among the male sample.
Results for female health behaviors are presented in Appendix Section G.
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Figure 4: Joint distribution of the screening probability at even and
odd ages

Notes: The figure plots the empirical joint distribution of screening probabilities at even and odd ages, based on 10-year
health screening history in the survey data. The sample includes 5,701 individuals aged 40 or above in 2009 who
participated in the survey all years from 2009–2018. Compliance groups are defined using the rule shown in Equation (2):
compliers participate more than half of the time at subsidized ages and less than half at unsubsidized ages; always-takers
participate more than half at subsidized and unsubsidized ages; never-takers participate less than half at both subsidized
and unsubsidized ages; defiers participate more than half at unsubsidized ages and less than half at subsidized ages.
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Figure 5: Cancer detection rates

(a) Any cancer (b) Stomach cancer

(c) Breast cancer (d) Cervical cancer

(e) Liver cancer (f) Colorectal cancer

(g) Lung cancer (h) Prostate cancer

Notes: Figures plot the true positive cancer diagnosis rate by age separately for the treatment (even) and control (odd)
groups, using the Customized Cohort Database of national health insurance claims. Any cancer refers to the seven
cancers listed. Cancer cases include both invasive and in situ types. Diagnoses are identified from the Coinsurance
Reduction Program for Rare and Severe Diseases and include those detected with and without screenings.

57



Figure 6: Cancer survival rates by window

Notes: The figure plots survival rates for cancer patients diagnosed at subsidized (even) and unsubsidized (odd) ages,
with survival windows ranging from 1 to 10 years, using the Customized Cohort Database of national health insurance
claims. Survival rates are shown on the left y-axis. Black dots plot the difference in survival rates controlling for age,
with 95 percent confidence intervals, and should be read from the right y-axis. Cancer refers to any of the seven cancers
listed in Figure 5.
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Appendix A Balance tests using insurance claims data

This section presents balance checks that were nor presented in the main paper. I

first present the balance table, estimated using the survey data, but with additional

unadjusted differences between the treatment and control group. Next, I present two

balance tables, estimated using the Customized Cohort Database and Standard Cohort

Database from the National Health Insurance Service (NHIS) claims data.

Table A1 presents the same balance table as in 2, estimated using the survey data,

with the additional unconditional differences between the treatment and control groups,

presented in column 3. As discussed in Section 3, the imbalances arise by design due

to the use of analytical sample starting from age 40, an even number. The conditional

differences, presented in column 4, show that age adjustment makes the point estimates

smaller in absolute value and also reduces the standard errors.

Table A2 and A3 present the balance tables using the Customized Cohort Database

and Standard Cohort Database from the National Health Insurance Service claims data.

Comparing unconditional and conditional differences reveals that age adjustment makes

the treatment and control group comparable. While some age-adjusted differences are

significant, they are small in magnitudes, supporting balance between even- and odd-aged

individuals.
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Table A1: Balance test with unconditional and conditional differences

(1) (2) (3) (4)

Treatment (even) Control (odd) Unconditional
differences

Conditional
differences

Age 58.697 59.240 –0.543*** -
(12.532) (12.353) (0.026) -

Female 0.530 0.532 –0.002** –0.002*
(0.499) (0.499) (0.001) (0.001)

Currently married 0.799 0.798 0.0009 –0.0011
(0.401) (0.402) (0.0009) (0.0008)

Years of education 10.320 10.227 0.093*** –0.003
(4.510) (4.538) (0.009) (0.008)

Working status 0.610 0.608 0.001 –0.003*
(0.488) (0.488) (0.002) (0.001)

Individual income 1446.3 1425.7 20.607*** 2.762
(2081.6) (2068.1) (5.508) (5.185)

Household income 4104.4 4086.7 17.735 3.221
(3708.6) (3737.9) (14.555) (14.267)

Own a house 0.734 0.737 –0.002* –0.0002
(0.442) (0.441) (0.001) (0.0011)

Number of household members 3.067 3.051 0.016*** –0.004
(1.317) (1.317) (0.003) (0.003)

N 54274 52909
Share (0.51) (0.49)
F(8, 15939) 1.65

(0.10)

Notes: This table reports the unconditional and conditional balance check between the treatment group (even age group)
and the control group (odd age group). The sample consists of those with age in [40, 89]. Column 3 reports the unconditional
difference between the treatment and the control group. Column 4 reports the difference conditional on linear splines of
age with 5 years interval. Standard errors are clustered at the individual level and reported in parentheses. A */**/***
indicates significance at the 10/5/1% levels.
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Table A2: Balance table with NHIS Customized Cohort Database

(1) (2) (3) (4)

Treatment (even) Control (odd) Unconditional
difference

Conditional
difference

Age 52.158 52.748 –0.590*** -
(9.445) (9.272) (0.001) -

Female 0.470 0.467 0.003*** 0.0002***
(0.499) (0.499) (0.000) (0.0000)

Insurance premium (KRW) 100,276 100,848 –572*** 65**
(106,844) (107,646) (31) (31)

Self-employed insurance: head 0.206 0.208 –0.002*** –0.0003***
(0.404) (0.406) (0.000) (0.0001)

Self-employed insurance: dependent 0.147 0.146 0.0008*** 0.00009
(0.354) (0.354) (0.0001) (0.00010)

Employee insurance: head 0.385 0.382 0.003*** 0.0007***
(0.487) (0.486) (0.000) (0.0001)

Employee insurance: dependent 0.238 0.239 –0.001*** –0.0005***
(0.426) (0.427) (0.000) (0.0001)

Medical aid insurance: head 0.017 0.017 –0.0005*** 0.00002
(0.128) (0.130) (0.0000) (0.00003)

Living in a metropolitan city 0.451 0.451 –0.0003*** 0.0003***
(0.498) (0.498) (0.0001) (0.0001)

Population/1,000 419.984 419.369 0.615*** –0.046
(261.563) (261.887) (0.045) (0.043)

Working 0.606 0.605 0.001*** 0.0003*
(0.489) (0.489) (0.000) (0.0001)

Agriculture, forestry and fishery 0.004 0.004 –0.00002 0.00003
(0.065) (0.065) (0.00003) (0.00003)

Manufacturing 0.363 0.361 0.002*** –0.0003*
(0.481) (0.480) (0.000) (0.0002)

Have disability 0.058 0.060 –0.002*** –0.000003
(0.234) (0.238) (0.000) (0.000031)

Disability grade 6.055 6.067 –0.012*** 0.003
(4.922) (4.935) (0.003) (0.003)

External physical disability 0.900 0.901 –0.0006*** –0.0001
(0.300) (0.299) (0.0002) (0.0002)

Internal physical disability 0.060 0.060 –0.0001 –0.000001
(0.237) (0.237) (0.0002) (0.000178)

Developmental disability 0.018 0.018 0.0007*** 0.0003***
(0.134) (0.132) (0.0001) (0.0001)

N 4,045,234 3,868,634
Share (0.51) (0.49)
F-statistic F(17, 567574) =

4.83
Prob ą F 0.000

Notes: This table reports the balance check between the treatment group (even-aged individuals) and the control group
(odd-aged individuals) using the Customized Cohort Database from the Korean National Health Insurance Service. The
sample consists of those with age in [40, 89]. Column 3 reports the unconditional difference between treatment and control
group. Column 4 reports the differences between treatment and control group conditional on linear splines of age with
5 years interval. Standard errors are clustered at the individual level and reported in parentheses. A */**/*** indicates
significance at the 10/5/1% levels.
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Table A3: Balance table with NHIS Standard Cohort Database

(1) (2) (3) (4)

Treatment (even) Control (odd) Unconditional
difference

Conditional
difference

Age 55.559 56.195 –0.636*** -
(11.669) (11.508) (0.002) -

Female 0.517 0.518 –0.001*** 0.0001***
(0.500) (0.500) (0.000) (0.0000)

Insurance premium decile 6.230 6.225 0.004*** 0.002*
(2.987) (2.996) (0.001) (0.001)

Self-employed insurance: head 0.228 0.228 –0.0006*** 0.00003
(0.419) (0.420) (0.0001) (0.00011)

Self-employed insurance: dependent 0.142 0.141 0.001*** –0.0001
(0.349) (0.348) (0.000) (0.0001)

Employee insurance: head 0.276 0.270 0.006*** 0.0005***
(0.447) (0.444) (0.000) (0.0001)

Employee insurance: dependent 0.315 0.320 –0.005*** –0.0004***
(0.464) (0.467) (0.000) (0.0001)

Medical aid insurance: head 0.032 0.033 –0.0008*** 0.000008
(0.176) (0.178) (0.0000) (0.000034)

Living in a metropolitan city 0.452 0.452 0.0004*** 0.0001
(0.498) (0.498) (0.0001) (0.0001)

Population/1,000 394.315 393.104 1.211*** 0.021
(255.342) (255.390) (0.040) (0.038)

Have disability 0.075 0.076 –0.002*** –0.00005
(0.263) (0.266) (0.000) (0.00004)

Disability grade 1.630 1.632 –0.002*** –0.0001
(0.483) (0.482) (0.000) (0.0003)

N 4,413,578 4,260,376
Share (0.51) (0.49)
F-statistic F(11, 650368) =

4.87
Prob ą F 0.000

Notes: This table reports the balance check between the treatment group (even-aged individuals) and the control group
(odd-aged individuals) using the Standard Cohort Database from the Korean National Health Insurance Service. The
sample consists of those with age in [40, 89]. Column 3 reports the unconditional difference between treatment and control
group. Column 4 reports the differences between treatment and control group conditional on linear splines of age with
5 years interval. Standard errors are clustered at the individual level and reported in parentheses. A */**/*** indicates
significance at the 10/5/1% levels.
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Appendix B Robustness checks for age controls

This section presents robustness checks for the age control variables. As discussed in

Section 3, I use linear splines with 5 years interval to adjust for age differences between

the treatment and control groups. This section provides robustness checks by using linear

splines with different intervals or by adding additional control variables.

Table A4 provides robustness check for balance table, presented in Table 2 in the main

text. In addition to linear splines with 5 years interval, I provide age adjusted differences

using linear splines with 3 and 7 years interval. The adjusted differences are small and

largely not statistically significant.

Table A5 provides robustness check for the effect of subsidies on take-up, presented

in Table 3 in the main text. In addition to linear splines with 5 years interval, I provide

first stage effects, estimated using 3 and 7 years interval in Panel A. I also add additional

control variables in Panel B. In addition to age controls using linear splines with 5 years

interval, I include full set of control variables, presented in the balance table, Table 2. Al-

ternatively, I also add individual fixed effects instead of full set of controls. The resulting

estimates are highly consistent, supporting the robustness of the main specification.

Table A6 provides robustness check for the cross spillover, presented in Table 4 in the

main text. Similar to the previous robustness check, I change the interval length of linear

splines age controls or add full set of control variables or individual fixed effects. The

resulting estimates are consistent.
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Table A4: Robustness check for balance table

(1) (2) (3)

3 years 5 years 7 years

Female –0.002* –0.002* –0.002*
(0.001) (0.001) (0.001)

Currently married –0.0014* –0.0011 –0.0012
(0.0009) (0.0008) (0.0008)

Years of education –0.003 –0.003 –0.003
(0.008) (0.008) (0.008)

Working status –0.003** –0.003* –0.003*
(0.002) (0.001) (0.001)

Individual income 1.1 2.8 1.2
(5.3) (5.2) (5.2)

Household income 0.6 3.2 –4.5
(15.4) (14.3) (14.1)

Own a house –0.0002 –0.0002 0.00002
(0.0011) (0.0011) (0.00109)

Number of household members –0.004 –0.004 –0.004*
(0.003) (0.003) (0.003)

Notes: This table reports the adjusted difference between the treatment (even-aged individuals) and the control (odd-aged
individuals) group conditional on linear splines of age with 3, 5 and 7 years interval. The sample consists of those with age
in [40, 89]. Standard errors are clustered at individual level and reported in parentheses. A */**/*** indicates significance
at the 10/5/1% levels.

Table A5: Effect of subsidies on take-up with different age controls

(1) (2) (3) (4)

General Stomach Breast Cervical

Panel A. Linear splines of age
Interval 3 0.187*** 0.190*** 0.191*** 0.144***

(0.003) (0.003) (0.004) (0.003)
Interval 5 0.187*** 0.190*** 0.191*** 0.145***

(0.003) (0.003) (0.004) (0.003)
Interval 7 0.187*** 0.190*** 0.191*** 0.144***

(0.003) (0.003) (0.004) (0.003)

Panel B. Linear splines with 5 years interval plus additional covariates
Full controls 0.187*** 0.190*** 0.191*** 0.145***

(0.003) (0.003) (0.004) (0.003)
Individual FE 0.189*** 0.191*** 0.192*** 0.146***

(0.003) (0.003) (0.004) (0.003)

Notes: This table reports the effect of biennial subsidies on 4 types of screening take-up with different control variables.
Screenings reported in column 1 to 4 are subject to biennial subsidies when ages are even-numbered. Panel A uses linear
splines of age with 3, 5, and 7 years intervals as controls. Panel B uses linear splines of age with 5 years interval plus
additional covariates. Full controls specification includes all the variables reported in balance table (Table 2) as controls.
Individual FE specification includes individual fixed effects as controls. Standard errors are clustered at individual level
and reported in parentheses. A */**/*** indicates significance at the 10/5/1% levels.
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Table A6: Cross spillover with different controls

(1) (2) (3) (4)

Liver Colorectal Prostate Lung

Panel A. Linear splines of age
Interval 3 0.027*** 0.033*** 0.007*** 0.0062***

(0.001) (0.001) (0.001) (0.0007)
Interval 5 0.027*** 0.033*** 0.007*** 0.0062***

(0.001) (0.001) (0.001) (0.0007)
Interval 7 0.027*** 0.033*** 0.007*** 0.0062***

(0.001) (0.001) (0.001) (0.0007)

Panel B. Linear splines with 5 years interval plus additional covariates
Full controls 0.027*** 0.033*** 0.007*** 0.0062***

(0.001) (0.001) (0.001) (0.0007)
Individual FE 0.028*** 0.033*** 0.007*** 0.0063***

(0.001) (0.001) (0.001) (0.0007)

Notes: This table reports the effect of biennial subsidies on 4 types of screening take-up with different control variables.
Liver and colorectal screenings are subject to annual subsidies, while prostate and lung screenings are not subsidized. Panel
A uses linear splines of age with 3, 5, and 7 years intervals as controls. Panel B uses linear splines of age with 5 years
interval plus additional covariates. Full controls specification includes all the variables reported in balance table (Table
2) as controls. Individual FE specification includes individual fixed effects as controls. Standard errors are clustered at
individual level and reported in parentheses. A */**/*** indicates significance at the 10/5/1% levels.
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Appendix C Robustness checks with different ana-

lytical samples

This section presents robustness checks for the balance between treatment and control

groups by using analytical samples of different starting ages. As discussed in Section 3,

the imbalance between treatment and control groups stems from the choice of analytical

sample starting from age 40, an even number. This section alternatively uses analytical

sample starting from 39 or 41 to show that the sample starting age is creating mechanical

imbalance between the treatment and the control groups. I provide robustness checks for

main results, running all the regressions without the age controls but with three different

analytical samples. The imbalances running in opposite directions depending on the

starting age provide nonparametric bounds for the estimates. This obviates the need to

specify any functional form for age control variables.

Table A7 presents unadjusted differences between treatment and control groups with

samples starting from age 39, 40, and 41. It shows that depending on the choice of

first age, the differences run in opposite direction. This confirms that the mechanical

imbalance between the two groups are indeed driven by the choice of an analytical sample.

Table A8 presents the effects of biennial subsidies on take-up without adjusting for

age difference between treatment and control groups. The effects are estimated in three

analytical samples with different starting ages. Since the imbalance runs in opposite

direction, depending on the choice of first age, the resulting estimates provide nonpara-

metric bounds for the effects of subsidies. The resulting estimates are highly consistent,

supporting the robustness of my main specification.

Similarly, Table A9 presents cross spillover with three different analytical samples with

different starting ages. The resulting estimates are consistent with our main estimates,

reported in Table 4 in the main text.
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Table A7: Balance test with different starting ages

(1) (2) (3)

Age P r39, 89s Age P r40, 89s Age P r41, 89s

Age 0.521*** –0.543*** 0.562***
(0.026) (0.026) (0.025)

Female –0.001 –0.002** –0.001
(0.001) (0.001) (0.001)

Currently married –0.0009 0.0009 –0.0018**
(0.0009) (0.0009) (0.0009)

Years of education –0.094*** 0.093*** –0.107***
(0.009) (0.009) (0.010)

Working status –0.006*** 0.001 –0.007***
(0.001) (0.002) (0.002)

Individual income –16.235*** 20.607*** –24.789***
(5.470) (5.508) (5.618)

Household income –23.153 17.735 –31.182**
(14.766) (14.555) (14.995)

Own a house 0.003*** –0.002* 0.003**
(0.001) (0.001) (0.001)

Number of household members –0.027*** 0.016*** –0.034***
(0.003) (0.003) (0.003)

N 110121 107183 104153

Notes: This table reports the balance check between the treatment (even-aged individuals) and the control (odd-aged
individuals) group using samples with different starting ages (39, 40, 41). The ending ages are at 89 for the three samples.
All regressions do not include any control variable. The coefficients report the average difference between the treatment
and the control group. Standard errors are clustered at individual level and reported in parentheses. A */**/*** indicates
significance at the 10/5/1% levels.

Table A8: Bounding estimates for the effect of subsidies on take-up

(1) (2) (3)

Age P r39, 89s Age P r40, 89s Age P r41, 89s

General 0.187*** 0.186*** 0.188***
(0.003) (0.003) (0.003)

Stomach 0.191*** 0.189*** 0.190***
(0.003) (0.003) (0.003)

Breast 0.192*** 0.191*** 0.190***
(0.004) (0.004) (0.004)

Cervical 0.165*** 0.165*** 0.162***
(0.003) (0.003) (0.003)

N 110121 107183 104153

Notes: This table reports the effect of biennial subsidies on 4 types of screening take-up, using samples with different
starting age (39, 40, 41). It does not include any control variable. These four screenings are subject to biennial subsidies at
even-numbered ages. Standard errors are clustered at individual level and reported in parentheses. A */**/*** indicates
significance at the 10/5/1% levels.
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Table A9: Bounding estimates for cross spillover

(1) (2) (3)

Age P r39, 89s Age P r40, 89s Age P r41, 89s

Liver 0.027*** 0.026*** 0.027***
(0.001) (0.001) (0.001)

Colorectal 0.033*** 0.033*** 0.034***
(0.001) (0.001) (0.001)

Lung 0.0061*** 0.0061*** 0.0064***
(0.0007) (0.0007) (0.0007)

Prostate 0.007*** 0.007*** 0.008***
(0.001) (0.001) (0.001)

N 110121 107183 104153

Notes: This table reports the effect of biennial subsidies on the take-up of liver and colorectal screenings (annually subsi-
dized) and lung and prostate screenings (unsubsidized), using samples with different starting age (39, 40, 41). It does not
include any control variable. Standard errors are clustered at individual level and reported in parentheses. A */**/***
indicates significance at the 10/5/1% levels.
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Appendix D Intertemporal substitution

This section presents detailed analyses on intertemporal substitution. The biennial

subsidies at even ages create an incentive to shift screening timing from odd to even ages

to receive subsidized screenings. This section provides evidence that biennial subsidies

lead to both net increase in participation and shift in screening timing, with advancing

screenings more common than delaying them.

First, the evidence for net increase in take-up comes from age cutoff. I focus on cohorts

around age 40 to examine how screening take-up changes at the subsidy eligibility cutoff.

If individuals were merely substituting from subsidized (even) to unsubsidized (odd)

ages, one would expect a sharp drop in participation at unsubsidized ages immediately

following the cutoff. However, as shown in the figures in the main text (Figure 1), I find

no such decline, which shows there is no clear sign of substitution around the cutoff age.

One concern with this argument is compositional changes at the age cutoff. Since age

cutoff coincides with the recommended starting age for screenings, if new people start to

participate from age 40, regardless of even or odd, this opposing force could mask the

drop in screening rate at unsubsidized ages after age 40. Therefore, I fix the sample by

focusing on those who were already participating before age 40 to examine if they exhibit

any drop at unsubsidized ages after age 40. I track 4 age cohorts at ages 36 to 43.

Panel A and B in Figure A2 present stomach and breast screening take-up pattern

for participants at age 36, 37, 38 and 39 separately. By definition, age 36 participants

show take-up rate of one at age 36.48 Comparing before and after age 40, one can see

that take-up at unsubsidized ages after 40 is not any lower than pre-40 take-up level, but

the take-up at subsidized ages are clearly much higher. This suggests that as one passes

age 40, take-up at subsidized ages rise due to subsidies and it does not come at the cost

of drop in take-up at unsubsidized ages.

Next, the evidence for intertemporal substitution comes from the monthly distribution

48One reason I do not examine those who participated at least once before age 40 is due to age 39
participants. By definition, they show average take-up of one at age 39. Therefore, the take-up pattern
for those who participated at least once before 40 shows abnormally large take-up at age 39 and makes
it hard to compare before and after 40.
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of screening take-up. I examine stomach and breast screening monthly take-up distribu-

tion from age 40 to 89. If there were intertemporal substitution, then it would be most

pronounced in January or December of the year when there are sharp changes in subsidy

eligibility. One can get screening a couple of weeks early and receive it in December of

subsidized (even) age instead of January of unsubsidized (odd) age. Similarly, one can

delay it a couple of weeks and receive it in January of subsidized age instead of December

of unsubsidized age.

Figure A2a and A2e present the monthly distribution for stomach and breast screening

take-up from age 40 to 89, separately for subsidized (even) and unsubsidized (odd) ages.

In each figure, there is a large bunching in December of the treatment group, suggesting

that individuals advance their screenings and participate before subsidies expire. In

contrast, there is no comparable bunching in January of the treatment group, which

would be expected if delays into subsidized years were common. This asymmetry suggests

that advancement is more prevalent than delay.

To make it more rigorous, I employ difference-in-differences design and compare the

monthly change in take-up before and after age 40 to take into account seasonal take-

up pattern in the absence of subsidies. Using the exact day of screening information, I

transform the individual-year data into individual-month-year data and run the following

econometric specification.

screenimt “θ0 ` θ1 ¨ after40imt ` θ2 ¨ age evenimt `

12
ÿ

m“2

monthm

` θ3 ¨ after40imt ¨ age evenimt `

12
ÿ

m“2

monthm ¨ after40imt

`

12
ÿ

m“2

monthm ¨ age evenimt `

12
ÿ

m“2

monthm ¨ after40imt ¨ age evenimt ` εimt

(3)

It is a fully saturated model of the following variables: piq after40imt, a dummy variable

that equals one if the age of individual i is 40 or above in month m and year t, piiq

age evenimt, a dummy variable that equals one if the age of individual i is even in month

m and year t, and piiiq tmonthmu12m“2, dummy variables for months using January as

the reference month. The outcome variable, screenimt, is a dummy variable that equals
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one if individual i received the stomach or breast screening in month m, year t. The

standard errors are clustered at the individual level. The analytical sample consists of

individuals with ages 20 to 89. Our first coefficient of interest is the coefficient of the

terms age evenimt `
ř12

m“2monthm ¨ age evenimt that provides comparison in monthly

take-up between even- and odd-aged individuals before age 40. There should be no sys-

tematic difference, since it is the period before subsidies apply. The second coefficient

of interest is the coefficient of the terms
ř12

m“2monthm ¨ after40imt that provides com-

parison in monthly take-up of odd-aged individuals before and after 40. Finally, the

third coefficient of interest is the coefficient of the terms
ř12

m“2monthm ¨ after40imt `

ř12
m“2monthm ¨ after40imt ¨ age evenimt that provides comparison in monthly take-up of

even-aged individuals before and after 40.

The second set of figures in each panel, Figure A2b and A2f provide comparison of

monthly take-up between treatment group before age 40 and control group before age 40.

These are the coefficients of the term age evenimt `
ř12

m“2monthm ¨ age evenimt. This

is the period before biennial subsidies kick in. Therefore, we do not find any systematic

difference in monthly take-up between the treatment and the control group.

The third set of figures in each panel, Figure A2c and A2g present the comparison

of monthly take-up between control group before age 40 and control group after age

40. These are coefficients of the term
ř12

m“2monthm ¨ after40imt. The figures show no

systematic monthly variation in take-up, suggesting that there was no differential change

in take-up across months in the control group before and after age 40 cutoff.

The fourth set of figures in each panel, Figure A2d and A2h present the comparison

of monthly take-up between treatment before age 40 and treatment after age 40. These

are coefficients of the term
ř12

m“2monthm ¨ after40imt `
ř12

m“2monthm ¨ after40imt ¨

age evenimt. For both stomach and breast screenings, there is a noticeable increase

in March and December, compared to January. The large spike in December suggests

advancing screenings, as individuals rush to complete their screenings before subsidies

expire. However, there is no comparable increase in January, suggesting that delaying

into subsidized years are uncommon, even after accounting for seasonal fluctuation in
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screening take-up. The increase in March is likely driven by reminder mails from regional

offices of National Health Insurance Service, typically sent in March and April to inform

people of the screenings they should receive. These reminders are sent every year, since

odd-aged individuals could also be eligible for certain screenings, like general, liver or

colorectal screenings.
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Figure A1: Screening take-up for participants before 40

Panel A. Stomach screening participants

(a) Age 36 participants

(b) Age 37 participants

(c) Age 38 participants

(d) Age 39 participants

Panel B. Breast screening participants

(e) Age 36 participants

(f) Age 37 participants

(g) Age 38 participants

(h) Age 39 participants

Notes: Figures plot the stomach and breast screening take-up for those who already participate in screening before age
40. The sample is restricted to four age cohorts around age 40. Each figure plots the take-up among either the stomach
or breast cancer participants at age 36, 37, 38 or 39. Even ages are colored in red and odd ages are colored in blue. 95
percent confidence intervals are shown in dashed line.
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Figure A2: Monthly screening take-up

Panel A. Stomach screening

(a) Average monthly take-up

(b) Treatment before 40 vs Control before 40

(c) Control before 40 vs Control after 40

(d) Treatment before 40 vs Treatment after 40

Panel B. Breast screening

(e) Average monthly take-up

(f) Treatment before 40 vs Control before 40

(g) Control before 40 vs Control after 40

(h) Treatment before 40 vs Treatment after 40

Notes: Figures plot the analysis results using the individual-month-year level data. First figures in each panel plots the
average monthly take-up of stomach and breast screenings. Control group is repeated after treatment group to provide an
easy comparison. Second figures plot the monthly differences in take-up between treatment and control group before age
40. Third figures plot the monthly differences in take-up in the control group between before and after age 40 using
January as the reference month. Fourth figures plot the monthly differences in take-up in the treatment group between
before and after age 40 using January as the reference month.
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Appendix E Additional analyses on cross spillover

This section presents additional analyses on the cross spillover, discussed in Section

5.1 in the main text. Table A10 presents the share of screenings that happen on the

same day with general screening. For instance, among stomach screening participants.

88 percent also receive general screening in the same year. Among participants in general

and stomach screenings, 96 percent receive the two screenings on the same day. If they

are not received on the same day, 2.7 percent receive general screening first followed by

stomach screening within 30 days. On the other hand, only 0.8 percent receive stomach

screening first followed by general screening.

Table A11 presents the heterogeneity in cross spillover effects between male and fe-

male. The goal is to examine which of the 4 biennial screenings is generating spillover

effects. Among 4 biennial screenings, general and stomach screenings are subsidized for

everyone, but breast and cervical screenings are provided only for women. If the two fe-

male screenings are generating spillover, there should be larger spillover effect for women

compared to men. The heterogeneous treatment effect by gender shown in Table A11

does not support this hypothesis. If anything, they seem to be slightly smaller for women

in the case of colorectal screening. This implies that general and stomach screenings are

the ones that generate spillover effects, not breast and cervical screenings. This could be

due to the fact general and stomach screenings are the most commonly received types of

screenings.

I also analyze the selection in cross spillover, that is, characteristics of individuals

who, in addition to receiving biennial screenings at even ages, further receive annually

subsidized or unsubsidized screenings. Our data indicate that participants in annual and

unsubsidized screenings are a subset of biennial screening participants. Among annual

or unsubsidized screening participants at even ages, more than 97% also receive biennial

screenings in the same year. This implies that individuals typically first receive biennial

screenings and some of them opt for additional annual or unsubsidized screenings. This

one-sided noncompliance simplifies the selection analysis. One only needs to examine who

participate in annual or unsubsidized screening among biennial screening participants. I
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run the following regression to estimate the characteristics of compliers in spillover.

yit “ δ0 ` δ1 ¨ screenit ` εit (4)

The sample is restricted to biennial screening participants at even ages.49 The explana-

tory variable, screenit, is an indicator variable for participating in any of the annual or

unsubsidized screenings. Standard errors are clustered at the individual level.

Table A12 presents the characteristics of compliers in cross spillover. Compared to

individuals who participate only in biennial screenings, those who additionally undergo

annually subsidized or unsubsidized screenings are less likely to be diagnosed with stom-

ach, breast and cervical disease, suggesting better overall health. This pattern can be

attributed to their higher socioeconomic status. Specifically, compliers have higher indi-

vidual and household income, higher educational attainments and are more likely to be

working.

The positive selection observed in socioeconomic status and health conditions suggests

the cross spillover is primarily driven by patients rather than providers. If physicians were

the main drivers, additional screenings would likely be recommended based on medical

necessity, leading to negative selection on health conditions, i.e., greater uptake among

individuals with poorer health. However, the strong positive selection on health, income,

and education indicates that cross spillover is largely driven by patients who are more

health-conscious and financially capable of affording additional, unsubsidized screenings.

Table A10: Share of screenings taken on the same day

(1) (2) (3) (4) (5) (6) (7)

Stomach Breast Cervical Liver Colorectal Prostate Lung

Pr(general = 1 | screen = 1) 0.878 0.861 0.834 0.844 0.799 0.786 0.699
Pr(same day | screen = 1, general = 1) 0.964 0.947 0.899 0.948 0.856 0.960 0.937
Pr(general first | screen = 1, general = 1) 0.027 0.037 0.053 0.036 0.110 0.024 0.045
Pr(general later | screen = 1, general = 1) 0.008 0.015 0.031 0.008 0.179 0.004 0.003

Notes: This table examines if people receive screenings on the same day with the general health screening. The sample is
those with age 40 to 89. screen “ 1 refers to the take-up of given screening in each column. General first (later) means
the screening concerned is received after (before) the general screening within 30 days.

49When the outcome variable is a diagnosis of a stomach disease, the sample is restricted to stomach
screening participants, with similar restrictions applied to breast and cervical screenings. For the other
outcome variables, the sample is restricted to participants in any of the four biennial screenings.
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Table A11: Heterogeneity in cross spillover effects across gender

(1) (2) (3)

Liver Colorectal Lung

treat 0.025*** 0.036*** 0.007***
(0.002) (0.002) (0.001)

treat ˆ Female 0.003 –0.005* –0.002
(0.003) (0.003) (0.001)

Female –0.017*** –0.012*** –0.0078***
(0.002) (0.002) (0.0009)

N 107183 107183 107183
Control group mean 0.028 0.027 0.009
Age range [40, 89] [40, 89] [40, 89]

Notes: This table reports estimates of cross spillover for men and women. The sample consists of those with age from
40 to 89. The variable treat equals one if one has an even age and eligible for subsidized screenings. Standard errors are
clustered at individual level and reported in parentheses. A */**/*** indicates significance at the 10/5/1% levels.

Table A12: Compliers in cross spillover

(1) (2) (3)

Participants in

Annual screenings Unsubsidized screenings Sample mean

Panel A. Diagnoses
Stomach –0.028*** –0.087*** 0.228

(0.006) (0.010)
Breast –0.007** –0.020*** 0.022

(0.003) (0.004)
Cervical –0.024*** –0.034** 0.067

(0.006) (0.015)
Panel B. SES

Individual income 874*** 1499*** 1592
(49) (110)

Household income 1012*** 1393*** 4564
(66) (145)

Years of education 0.975*** 1.342*** 10.769
(0.073) (0.129)

College graduate 0.074*** 0.131*** 0.196
(0.007) (0.014)

Working status 0.063*** 0.141*** 0.635
(0.008) (0.012)

Notes: This table reports the relative characteristics of biennial screening participants who further participate in annual
and unsubsidized screenings using the survey data. Table 1 shows the list of biennial, annual and unsubsidized screenings.
The sample is restricted to even age participants in any of the 4 biennial screenings. When outcome variable is stomach
or breast or cervical disease diagnosis, the sample is restricted to stomach or breast or cervical screening participants,
respectively. Column 1 reports the difference for those who further receive annual screenings and column 2 reports the
difference for those who further receive unsubsidized screenings. Column 3 reports the sample mean among the even age
biennial screening participants. All the coefficients are from separate regressions. Standard errors are clustered at the
individual level. They are reported in parentheses. A */**/*** indicates significance at the 10/5/1% levels.
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Appendix F Disease diagnoses from the survey data

This section provides a list of ICD-10 disease diagnosis codes that were reported

as a disease found through screenings in the survey data. The survey asked screening

participants if they had found any disease through screening, and if so, the diagnoses

were coded using the Korean Classification of Diseases diagnosis code (Korean version of

the ICD-10). I list below the ICD-10 codes that were reported for each screening. The

diagnoses are listed in the order of frequency, so this provides a list of common diagnoses

made through screening.

• Stomach diseases

– K29 Gastritis and duodenitis

– K52 Other and unspecified noninfective gastroenteritis and colitis

– K21 Gastro-esophageal reflux disease

– K25 Gastric ulcer

– B98 Helicobacter pylori

– K31 Other diseases of stomach and duodenum

– K20 Esophagitis

– C16 Malignant neoplasm of stomach

– K26 Duodenal ulcer

• Colorectal diseases

– K63 Other diseases of intestine

– D12 Benign neoplasm of colon, rectum, anus and anal canal

– D13 Benign neoplasm of other and ill-defined parts of digestive system

– R19 Other symptoms and signs involving the digestive system and abdomen

– C18 Malignant neoplasm of colon

• Breast diseases
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– N63 Unspecified lump in breast

– N64 Other disorders of breast

– D24 Benign neoplasm of breast

– N60 Benign mammary dysplasia

– C50 Malignant neoplasm of breast

• Female reproductive part diseases

– N76 Other inflammation of vagina and vulva

– N71 Inflammatory disease of uterus, except cervix

– N85 Other noninflammatory disorders of uterus, except cervix

– N83 Noninflammatory disorders of ovary, fallopian tube and broad ligament
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Appendix G Complier selection

G.1 Methodology for characterizing compliers

To formally estimate the average group characteristics and make comparisons between

always-takers, compliers and never-takers, I follow the approach used in Kim and Lee

(2017); Einav et al. (2020) and Kowalski (2023).50 The key idea is to infer always-takers’

characteristics from screening participants in the control group and infer never-takers’

characteristics from screening nonparticipants in the treatment group. The exogeneity

of the assignment mechanism guarantees that the characteristics of always- and never-

takers will be the same in both the treatment and the control group. The compliers’

characteristics can be backed out from the equation where the characteristic of screen-

ing participants (nonparticipants) in the treatment (control) group is a weighted sum

of always-takers’ (never-takers’) and compliers’ characteristics, with the weights corre-

sponding to the relative share of each group.

I present detailed steps to infer complier characteristics in the even/odd subsidy de-

sign.51 I estimate the following equation to estimate group characteristics.

yit “ λ1age evenit ` λ2screenit ` λ3age evenit ˆ screenit ` λ1

4fpageitq ` εit (5)

Given a characteristic variable, yit, the above equation can be used to estimate the average

characteristic of always-takers by imposing the condition age evenit “ 0 and screenit “ 1.

This is because always-takers are the only group that gets screened even in the absence

of subsidies. The estimates are given by gAT pyq “ λ̂2 ` λ̂4
1
fpageitq. Similarly, noting

that never-takers are the ones who do not get screened despite the presence of subsidies,

I impose age evenit “ 1 and screenit “ 0, and the resulting estimates are given by

gNT pyq “ λ̂1 ` λ̂4
1
fpageitq.

Compliers characteristics can be derived from either the screening participants in the

50Marbach and Hangartner (2020) gives a nice summary of the methodology.
51Appendix in Einav et al. (2020) present the detailed steps to characterize compliers at age 40 in the

regression discontinuity setting.
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treatment group as a weighted sum with always-takers or the screening nonparticipants

in the control group as a weighted sum with never-takers. While random assignment

mechanism implies their average characteristics will be the same in both the treatment

and the control group, we differentiate them by denoting compliers in the treatment group

as treated compliers and compliers in the control group as untreated compliers.

To calculate the characteristics of treated compliers, denote the average characteristic

of treated compliers as g1Cpyq, untreated compliers as g0Cpyq, and the screening participants

in the treatment group as gT pyq. The screening participants in the treatment group are

always-takers and treated compliers whose average is given by gT pyq “
πAT

πAT `πC
gAT pyq `

πC

πAT `πC
g1Cpyq, where πAT and πC are share of always-takers and compliers, respectively.

Imposing age evenit “ 1 and screenit “ 1, we get gT pyq “ λ̂1 ` λ̂2 ` λ̂3 ` λ̂4
1
fpageitq.

The share of always-takers and compliers can be calculated from the first stage regression

given in (1) as πC “ β̂1, πAT “ β̂0 adjusting for age.52 Inserting all the estimated terms

to the equation g1Cpyq “ rpπAT ` πCqgT pyq ´ πATgAT pyqs{πC , the complier characteristic

can be backed out. The average characteristics for untreated compliers can be calculated

in a similar way.53

To characterize compliers in reference to always-takers and never-takers, I take ratios

between treated compliers and always-takers,
g1Cpyq

gAT pyq
, and between untreated compliers

and never-takers,
g0Cpyq

gNT pyq
.54 Standard errors are calculated using bootstrap with 500 repli-

cations clustering at the individual level. The null hypothesis used for ratios is that the

ratio is equal to one.

52Under monotonicity, the share for never-takers is πNT “ 1 ´ πAT ´ πC “ 1 ´ β̂0 ´ β̂1

53I examine selection pattern at age 60 by imposing ageit “ 60. The results are robust to the different
choices of age.

54The reason I differentiate treated and untreated compliers is the possibility that health screening
may affect health behaviors. While demographic variables are in general pre-specified and not likely to
be affected by health screening, health behaviors such as smoking or drinking can be affected by health
screening. Comparing treated compliers with never-takers may be contaminated since treated compliers
have received screening while never-takers have not. Same applies to comparison between untreated
compliers with always-takers. Therefore, I compare always-takers with treated compliers, both of whom
participated in screening, and never-takers with untreated compliers, both of whom did not participate
in screening.
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G.2 Health behaviors among female sample

Table 5 in the main text presented selection in health behaviors for men. Table A13

presents the selection results in health behaviors for women. Health behaviors exhibit

large differences between mem and women, and that is why their selection patterns are

examined separately. For example, smoking is primarily a male activity. While both men

and women drink, most of the everyday drinkers are men. By splitting the sample, I

control for this large differences in their health behaviors. I find consistent pattern as

in the male subsample that female compliers are less likely to smoke and more likely to

exercise than never-takers.

Table A13: Health behaviors among female compliers with subsidies

(1) (2) (3) (4) (5) (6)

Average value Ratio

Always-
takers

Treated
compliers

Untreated
compliers

Never-
takers

CP1{AT CP0{NT

Panel A. Health behaviors
Current smoker 0.018 0.017 0.011 0.030 0.921 0.355***

(0.005) (0.005) (0.005) (0.005) (0.327) (0.141)
Everyday smoker 0.015 0.017 0.009 0.028 1.086 0.342***

(0.005) (0.005) (0.005) (0.004) (0.516) (0.147)
Current drinker 0.526 0.515 0.506 0.492 0.978 1.029

(0.016) (0.017) (0.017) (0.013) (0.029) (0.024)
Everyday drinker 0.009 0.010 0.009 0.013 1.075 0.720

(0.003) (0.003) (0.003) (0.002) (0.474) (0.269)
Vigorous exercise 0.167 0.147 0.164 0.127 0.879 1.290***

(0.010) (0.010) (0.011) (0.007) (0.077) (0.087)
Moderate exercise 0.355 0.355 0.347 0.305 1.001 1.135***

(0.013) (0.014) (0.016) (0.010) (0.045) (0.049)
Walking 0.841 0.835 0.826 0.812 0.993 1.017

(0.010) (0.010) (0.013) (0.008) (0.014) (0.016)

Notes: This table reports the average values of health behaviors among always-takers, never-takers, treated compliers
and untreated compliers, estimated using the survey data. The analytical sample is restricted to female sample. Treated
compliers are compliers in the treatment group who participate in screening. Untreated compliers are compliers in the
control group who do not participate. The average value is calculated using Equation (5). The null hypotheses used for
ratios are H0 : CP1{AT “ 1 and H0 : CP0{NT “ 1 for comparison with always-takers and never-takers, respectively, where
AT = Always-takers, NT = Never-takers, CP1 = Treated compliers and CP0 = Untreated compliers. All the average values
and ratios are calculated at age 60. Standard errors are calculated using bootstrap with 500 replications and are clustered
at individual level. They are reported in parentheses. A */**/*** indicates significance at the 10/5/1% levels.
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G.3 Additional analyses on selection

This section provides additional analyses on selection into screenings. Table A14

provides selection into specific medical tests used for screenings. Table A15 provides

selection pattern for non-working population.

Table A14 presents the probability of receiving specific medical tests for always-takers

and treated compliers. Panel A presents tests covered by the National Health Insurance

Service (NHIS). Blood/urine/X-ray tests are common tests in general health screening.

Stool test is used in colorectal screening. Endoscopy is used for both stomach and col-

orectal screenings. Biopsy is used in various screenings, normally as diagnostic tests, for

closer examination of tissues. For these covered tests, compliers are more likely or as

likely to use them as always-takers.

Panel B presents tests not covered by NHIS. Since these tests are not covered, they

are usually paid out-of-pocket by patients.55 Compliers are less likely to use these tests

than always-takers. This finding is consistent with negative selection of compliers in

terms of socioeconomic status. It also suggests that compliers’ worse health condition,

as evidenced by higher probability of finding a disease through screening, is not because

compliers receive more medical tests.

Table A15 presents the selection analysis for non-working population. Workplace

wellness program that offers annual health screenings are another source of free screenings,

and employees who have access to the programs may be categorized as always-takers.

Although this does not alter the selection analysis results, it may affect the interpretation

that individuals respond to lower prices of screenings. However, Table A15 shows that

even among non-working population, compliers have significantly higher incidence of

stomach diseases and lower household income, suggesting that our findings are not entirely

driven by workplace wellness programs.

55CT is Computed Tomography scan, MRI is Magnetic Resonance Imaging scan, PET is Positron
Emission Tomography scan, EEG is Electroencephalogram, and EKG is Electrocardiogram. While bone
density test is part of general screening, it is subsidized only for women at age 54 and 66. For male or
women at different ages, the test should be paid out-of-pocket.
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Table A14: Comparing medical tests received

(1) (2) (3)

Average value Ratio

Always-takers Treated Compliers CP1{AT

Panel A. Tests covered by NHIS
Blood/urine/stool/X-ray 0.795 0.885 1.114***

(0.005) (0.006) (0.012)
Endoscopy 0.812 0.834 1.027**

(0.006) (0.006) (0.011)
Biopsy 0.025 0.030 1.181

(0.002) (0.002) (0.154)

Panel B. Tests not covered by NHIS
Sonogram 0.319 0.274 0.857***

(0.007) (0.007) (0.031)
CT 0.042 0.016 0.370***

(0.003) (0.002) (0.070)
MRI 0.010 0.006 0.608**

(0.001) (0.001) (0.183)
PET 0.002 –0.000 –0.213***

(0.001) (0.000) (0.264)
EEG 0.002 0.002 0.755

(0.001) (0.001) (0.586)
EKG 0.159 0.126 0.790***

(0.005) (0.005) (0.048)
Bone density 0.034 0.028 0.844

(0.003) (0.003) (0.123)

Notes: This table reports the receipt of medical tests among always-takers and treated compliers. Panel A presents tests
that are covered by the National Health Insurance Service (NHIS). Blood/urine/stool/X-ray tests are main tests of general
screening. Endoscopy is used in stomach and colorectal screenings. Biopsy is used in various screenings, normally as
diagnostic tests, for closer examination of tissues. Panel B presents tests that are not covered by the NHIS. These are the
tests where screening participants bear the full costs. The average value is calculated using Equation (5). It is not reported
for never-takers and untreated compliers, since by definition, they do not receive screening. The null hypotheses used for
ratios are H0 : CP1{AT “ 1 where AT = Always-takers and CP1 = Treated compliers. Standard errors are calculated
using bootstrap with 500 replications and are clustered at individual level. They are reported in parentheses. A */**/***
indicates significance at the 10/5/1% levels.
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Table A15: Compliers with subsidies among non-working population

(1) (2) (3) (4) (5) (6)

Average value Ratio

Always-
takers

Treated
compliers

Untreated
compliers

Never-
takers

CP1{AT CP0{NT

Panel A. Diagnoses
Stomach 0.171 0.283 - - 1.654*** -

(0.011) (0.012) - - (0.144) -
Breast 0.018 0.027 - - 1.552 -

(0.005) (0.005) - - (0.897) -
Cervical 0.056 0.059 - - 1.046 -

(0.009) (0.009) - - (0.294) -
Colorectal 0.195 0.266 - - 1.365 -

(0.019) (0.035) - - (0.287) -

Panel B. SES
Individual income 166 159 166 171 0.958 0.969

(18) (19) (20) (17) (0.112) (0.099)
Household income 4381 4131 4186 3728 0.943* 1.123***

(134) (131) (138) (107) (0.031) (0.028)
Years of education 10.363 10.430 10.396 9.652 1.007 1.077***

(0.147) (0.154) (0.151) (0.126) (0.015) (0.012)
College graduate 0.128 0.113 0.124 0.096 0.881 1.293***

(0.013) (0.013) (0.013) (0.010) (0.109) (0.111)

Panel C. Health behaviors
Current smoker 0.363 0.309 0.348 0.419 0.849** 0.829**

(0.038) (0.036) (0.040) (0.033) (0.077) (0.069)
Everyday smoker 0.363 0.299 0.347 0.412 0.824** 0.843**

(0.037) (0.036) (0.040) (0.032) (0.076) (0.070)
Current drinker 0.825 0.797 0.774 0.722 0.965 1.073

(0.035) (0.033) (0.040) (0.028) (0.040) (0.049)
Everyday drinker 0.148 0.103 0.086 0.132 0.692* 0.649*

(0.025) (0.024) (0.031) (0.019) (0.166) (0.206)
Vigorous exercise 0.287 0.323 0.366 0.241 1.124 1.517***

(0.028) (0.029) (0.034) (0.023) (0.118) (0.140)
Moderate exercise 0.515 0.509 0.545 0.398 0.989 1.372***

(0.033) (0.031) (0.040) (0.025) (0.072) (0.102)
Walking 0.862 0.866 0.855 0.777 1.004 1.101**

(0.027) (0.023) (0.038) (0.021) (0.033) (0.050)

Notes: This table reports the average values of screening diagnoses, socioeconomic status, and health behaviors among
always-takers, never-takers, treated compliers and untreated compliers. The analytical sample consists of individuals aged
40 to 89 who were not working. Treated compliers are compliers in the treatment group who participate in screening.
Untreated compliers are compliers in the control group who do not participate. The average value is calculated using
Equation (5). Diagnoses are not reported for untreated compliers and never-takers, since by definition, they do not receive
screening. Health behaviors are calculated using the male sample only to account for vast gender differences. The null
hypotheses used for ratios are H0 : CP1{AT “ 1 and H0 : CP0{NT “ 1 for comparison with always-takers and never-
takers, respectively, where AT = Always-takers, NT = Never-takers, CP1 = Treated compliers and CP0 = Untreated
compliers. All the average values and ratios are calculated at age 60. Standard errors are calculated using bootstrap with
500 replications and are clustered at individual level. They are reported in parentheses. A */**/*** indicates significance
at the 10/5/1% levels.
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Appendix H Cancer diagnosis

This section provides detailed survival rates for cancer patients. For each cancer

examined in this study, Table A16 and A17 present 1, 3, 5, 7, and 10 year survival rates,

separately for those diagnosed in the treatment (even age) and the control (odd age)

group.

Table A16: Survival rate comparisons

(1) (2) (3) (4)

Control group
cancer diagnoses

Treatment -
Control

Percent relative to
control group
diagnoses

N

Panel A. Any cancer
1 year survival rate 0.897 0.008*** 0.898 72,744

(0.002)
3 year survival rate 0.837 0.012*** 1.404 65,667

(0.003)
5 year survival rate 0.801 0.012*** 1.472 52,962

(0.004)
7 year survival rate 0.776 0.009 1.124 41,682

(0.005)
10 year survival rate 0.760 0.001 0.134 27,390

(0.007)
Panel B. Stomach cancer
1 year survival rate 0.918 0.015*** 1.583 16,500

(0.004)
3 year survival rate 0.873 0.017*** 1.957 15,225

(0.006)
5 year survival rate 0.843 0.020** 2.321 12,697

(0.008)
7 year survival rate 0.813 0.020** 2.488 10,302

(0.010)
10 year survival rate 0.791 0.014 1.734 6,937

(0.013)
Panel C. Breast cancer
1 year survival rate 0.964 0.005* 0.486 17,037

(0.003)
3 year survival rate 0.929 0.012** 1.261 15,284

(0.005)
5 year survival rate 0.901 0.017** 1.843 12,183

(0.008)
7 year survival rate 0.877 0.017* 1.960 9,523

(0.010)
10 year survival rate 0.852 0.015 1.726 6,440

(0.013)
Panel D. Cervical cancer
1 year survival rate 0.969 0.002 0.173 5,608

(0.005)
3 year survival rate 0.944 0.012 1.262 5,186

(0.008)
5 year survival rate 0.927 0.019* 2.033 4,475

(0.010)
7 year survival rate 0.918 0.021* 2.330 3,800

(0.012)
10 year survival rate 0.905 0.024 2.638 2,871

(0.015)

Notes: This table compares the survival rates of cancers diagnosed at even ages with the ones diagnosed at odd ages.
The sample consists of cancer diagnosis made at age in [40, 89]. Column 1 reports the survival rates of the cancers
diagnosed at odd ages. Column 2 reports the difference in survival rates of the cancers diagnosed at even ages compared
to the ones diagnosed at odd ages controlling for age. Column 3 reports the relative size of the difference (column 2) in
percentage compared to the odd group mean (column 1). Standard errors are clustered at the individual level and reported
in parentheses. A */**/*** indicates significance at the 10/5/1% levels.
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Table A17: Survival rate comparisons

(1) (2) (3) (4)

Control group
cancer diagnoses

Treatment -
Control

Percent relative to
control group
diagnoses

N

Panel E. Liver cancer
1 year survival rate 0.729 0.028** 3.789 6,816

(0.011)
3 year survival rate 0.611 0.029* 4.813 6,184

(0.016)
5 year survival rate 0.537 0.030 5.659 4,991

(0.019)
7 year survival rate 0.498 0.013 2.669 3,912

(0.023)
10 year survival rate 0.497 –0.039 –7.769 2,405

(0.029)
Panel F. Colorectal cancer
1 year survival rate 0.919 0.006 0.633 14,332

(0.004)
3 year survival rate 0.859 0.012 1.400 12,960

(0.007)
5 year survival rate 0.826 0.009 1.146 10,563

(0.010)
7 year survival rate 0.802 0.006 0.696 8,388

(0.012)
10 year survival rate 0.782 –0.007 –0.884 5,546

(0.015)
Panel G. Lung cancer
1 year survival rate 0.699 –0.003 –0.449 7,318

(0.011)
3 year survival rate 0.566 –0.011 –1.894 6,378

(0.016)
5 year survival rate 0.496 –0.026 –5.315 4,872

(0.019)
7 year survival rate 0.459 –0.038* –8.261 3,544

(0.023)
10 year survival rate 0.412 –0.028 –6.771 2,015

(0.030)
Panel H. Prostate cancer
1 year survival rate 0.942 –0.002 –0.183 6,207

(0.006)
3 year survival rate 0.879 –0.008 –0.861 5,403

(0.011)
5 year survival rate 0.820 –0.007 –0.804 3,935

(0.016)
7 year survival rate 0.770 –0.015 –1.926 2,796

(0.022)
10 year survival rate 0.703 –0.015 –2.198 1,527

(0.031)

Notes: This table compares the survival rates of cancers diagnosed at even ages with the ones diagnosed at odd ages.
The sample consists of cancer diagnosis made at age in [40, 89]. Column 1 reports the survival rates of the cancers
diagnosed at odd ages. Column 2 reports the difference in survival rates of the cancers diagnosed at even ages compared
to the ones diagnosed at odd ages controlling for age. Column 3 reports the relative size of the difference (column 2) in
percentage compared to the odd group mean (column 1). Standard errors are clustered at the individual level and reported
in parentheses. A */**/*** indicates significance at the 10/5/1% levels.
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Appendix I Regression discontinuity analysis using

age cutoffs

This section examines screening take-up, selection into screening, and causal effects of

screenings around the age cutoffs using a regression discontinuity (RD) design. Subsidy

eligibility begins at age 40 for most screenings, with exceptions at age 30 for cervical and

50 for colorectal screenings. Since these age thresholds coincide with clinical guidelines

for screening initiation, the estimated effects capture the combined influence of subsidies

and guideline recommendations.
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Figure A3: 2-year average screening rates

(a) General screening (b) Stomach screening

(c) Breast screening (d) Cervical screening

(e) Liver screening (f) Colorectal screening

(g) Lung screening (h) Prostate screening

Notes: Figures show the 2-year average screening rates using the survey data. Ages are binned by two years and the
average screening rates within each 2-year bins are plotted with 95% confidence intervals. Dashed vertical lines show the
subsidy starting age and/or age 40.
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Table A18: Effect of subsidies on 2-year take-up using age cutoff

(1) (2) (3) (4) (5) (6)

Biennial Annual

General Stomach Breast Cervical Liver Colorectal

Age ě 40 0.086*** 0.105*** 0.112*** 0.011***
(0.007) (0.006) (0.009) (0.004)

Age ě 30 0.009
(0.007)

Age ě 50 0.015***
(0.005)

Constant 0.095*** 0.061*** 0.064*** 0.029*** 0.024*** 0.039***
(0.005) (0.004) (0.005) (0.004) (0.002) (0.003)

N 34713 34713 17725 12168 34713 34819
Adj R2 0.020 0.032 0.037 0.015 0.004 0.003
Percentage increase 91 173 175 30 47 40
Sample age range [34, 45] [34, 45] [34, 45] [24, 35] [34, 45] [44, 55]
Subsidy starting age 40 40 40 30 40 50

Notes: This table reports the effect of subsidies on the take-up of subsidized screenings using the survey data. Regression
discontinuity design is used after binning ages by 2 years. All estimates are around the respective subsidy starting age for
each screening given in the table. 6 years (3 bins) before and after the subsidy starting age are used as analytical sample.
The econometric specification is given in Equation (??). Coefficients for Age ě c measures the jump in take-up at age
c and the constant term measures the take-up right before the jump. The percentage increase refers to the relative size
of the jump at the cutoff compared to the constant. Standard errors are clustered at the individual level and reported in
parentheses. A */**/*** indicates significance at the 10/5/1% levels.

90



Table A19: Complementarity in screening take-up

(1) (2)

Cervical Colorectal

Age ě 40 0.074*** 0.014***
(0.010) (0.003)

Constant 0.093*** 0.018***
(0.006) (0.002)

N 17725 34713
Adj R2 0.013 0.004

Sample age range [34, 45] [34, 45]
Subsidy starting age 30 50
Age controls
Control group mean
Percentage increase 80 78

Notes: This table reports the cross spillover in take-up generated due to different subsidy starting age. Column 1 and 2
report cross spillover at age 40 for cervical and colorectal screenings that are subsidized from age 30 and 50, respectively.
The analytical sample is 6 years before and after 40, that is, [34, 45]. Ages are binned by 2 years and the outcome variable
is 2-year average take-up. The econometric specification using regression discontinuity design (RD) is given in Equation
(??). Standard errors are clustered at the individual level and reported in parentheses. A */**/*** indicates significance
at the 10/5/1% levels.
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Table A20: Compliers with subsidies using age 40 cutoff

(1) (2) (3) (4) (5) (6)

Average value Ratio

Always-
takers

Treated
compliers

Untreated
compliers

Never-takers CP1{AT CP0{NT

Panel A. Diagnoses
Stomach 0.125 0.302 - - 2.410** -

(0.024) (0.028) - - (0.670) -
Breast 0.027 0.028 - - 1.047 -

(0.014) (0.016) - - (7.810) -
Cervical 0.166 0.030 - - 0.181** -

(0.028) (0.053) - - (0.373) -
Colorectal 0.143 0.179 - - 1.248 -

(0.044) (0.113) - - (1.820) -

Panel B. SES
Individual income 2522 1887 1767 2179 0.748** 0.811

(110) (204) (368) (46) (0.100) (0.176)
Household income 5906 4763 4581 4744 0.806*** 0.966

(139) (255) (704) (67) (0.054) (0.158)
Years of education 14.169 13.812 13.990 13.658 0.975 1.024

(0.109) (0.194) (0.370) (0.051) (0.018) (0.029)
College graduate 0.392 0.414 0.397 0.323 1.057 1.228

(0.025) (0.041) (0.078) (0.010) (0.151) (0.257)
Working status 0.780 0.655 0.578 0.758 0.840** 0.763**

(0.021) (0.039) (0.085) (0.009) (0.064) (0.116)
Cancer insurance 0.296 0.341 0.322 0.251 1.153 1.281

(0.023) (0.041) (0.075) (0.009) (0.195) (0.322)

Panel C. Health behaviors
Current smoker 0.197 0.199 0.384 0.288 1.012 1.335

(0.021) (0.038) (0.082) (0.011) (0.276) (0.306)
Everyday smoker 0.184 0.191 0.371 0.272 1.041 1.364

(0.021) (0.037) (0.082) (0.010) (0.295) (0.323)
Current drinker 0.869 0.776 0.832 0.819 0.894** 1.017

(0.019) (0.036) (0.076) (0.009) (0.052) (0.096)
Everyday drinker 0.038 0.039 0.070 0.047 1.035 1.489

(0.009) (0.019) (0.046) (0.005) (0.778) (1.078)
Vigorous exercise 0.297 0.233 0.295 0.266 0.785 1.107

(0.024) (0.046) (0.088) (0.009) (0.202) (0.354)
Moderate exercise 0.404 0.456 0.348 0.396 1.128 0.879

(0.026) (0.050) (0.104) (0.010) (0.183) (0.276)
Walking 0.791 0.803 0.892 0.755 1.015 1.181

(0.022) (0.042) (0.092) (0.009) (0.072) (0.130)

Notes: This table reports the average values of screening diagnoses, socioeconomic status, and health
behaviors among always-takers, never-takers, treated compliers and untreated compliers. The compliance
groups are defined using the age 40 cutoff. Ages are binned by two years to average out the substitution
effect between the even and odd years after the age 40. Treated compliers are compliers in the treatment
group who participate in screening. Untreated compliers are compliers in the control group who do not
participate. Diagnoses are not reported for untreated compliers and never-takers, since by definition, they
do not receive screening. The null hypotheses used for ratios areH0 : CP1{AT “ 1 andH0 : CP0{NT “ 1
for comparison with always-takers and never-takers, respectively, where AT = Always-takers, NT =
Never-takers, CP1 = Treated compliers and CP0 = Untreated compliers. Standard errors are calculated
using bootstrap with replications and are clustered at individual level. They are reported in parentheses.
A */**/*** indicates significance at the 10/5/1% levels.
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